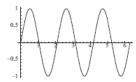
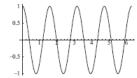
Math 260 Homework 4.2

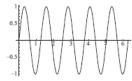
38. [M] The graph of f(t) is given below. A conjecture is that $f(t) = \sin 3t$.



The graph of g(t) is given below. A conjecture is that $g(t) = \cos 4t$.



The graph of $\mathbf{h}(t)$ is given below. A conjecture is that $\mathbf{h}(t) = \sin 5t$.



4.2 SOLUTIONS

Notes: This section provides a review of Chapter 1 using the new terminology. Linear tranformations are introduced quickly since students are already comfortable with the idea from \mathbb{R}^n . The key exercises are 17–26, which are straightforward but help to solidify the notions of null spaces and column spaces. Exercises 30–36 deal with the kernel and range of a linear transformation and are progressively more advanced theoretically. The idea in Exercises 7–14 is for the student to use Theorems 1, 2, or 3 to determine whether a given set is a subspace.

1. One calculates that

$$A\mathbf{w} = \begin{bmatrix} 3 & -5 & -3 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

so w is in Nul A.

2. One calculates that

$$A\mathbf{w} = \begin{bmatrix} 2 & 6 & 4 \\ -3 & 2 & 5 \\ -5 & -4 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},$$

so w is in Nul A.

3. First find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} - \begin{bmatrix} 1 & 0 & -2 & 4 & 0 \\ 0 & 1 & 3 & -2 & 0 \end{bmatrix},$$

the general solution is $x_1 = 2x_3 - 4x_4$, $x_2 = -3x_3 + 2x_4$, with x_3 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ -3 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -4 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} 2\\-3\\1\\0 \end{bmatrix}, \begin{bmatrix} -4\\2\\0\\1 \end{bmatrix} \right\}$$

4. First find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} - \begin{bmatrix} 1 & -3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix},$$

the general solution is $x_1 = 3x_2$, $x_3 = 0$, with x_2 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} 3\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

5. First find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} - \begin{bmatrix} 1 & -4 & 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & -5 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix},$$

the general solution is $x_1 = 4x_2 - 2x_4$, $x_3 = 5x_4$, $x_5 = 0$, with x_2 and x_4 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ 0 \\ 5 \\ 1 \\ 0 \end{bmatrix},$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 5 \\ 1 \\ 0 \end{bmatrix} \right\}.$$

6. First find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} - \begin{bmatrix} 1 & 0 & 5 & -6 & 1 & 0 \\ 0 & 1 & -3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the general solution is $x_1 = -5x_3 + 6x_4 - x_5$, $x_2 = 3x_3 - x_4$, with x_3 , x_4 , and x_5 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 6 \\ -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

- 7. The set W is a subset of R³. If W were a vector space (under the standard operations in R³), then it would be a subspace of R³. But W is not a subspace of R³ since the zero vector is not in W. Thus W is not a vector space.
- 8. The set W is a subset of R³. If W were a vector space (under the standard operations in R³), then it would be a subspace of R³. But W is not a subspace of R³ since the zero vector is not in W. Thus W is not a vector space.
- 9. The set *W* is the set of all solutions to the homogeneous system of equations p 3q 4s = 0, 2p s 5r = 0. Thus W = Nul A, where $A = \begin{bmatrix} 1 & -3 & -4 & 0 \\ 2 & 0 & -1 & -5 \end{bmatrix}$. Thus *W* is a subspace of \mathbb{R}^4 by Theorem 2, and is a vector space.

- **10**. The set *W* is the set of all solutions to the homogeneous system of equations 3a + b c = 0, a + b + 2c 2d = 0. Thus W = Nul A, where $A = \begin{bmatrix} 3 & 1 & -1 & 0 \\ 1 & 1 & 2 & -2 \end{bmatrix}$. Thus *W* is a subspace of \mathbb{R}^4 by Theorem 2, and is a vector space.
- 11. The set W is a subset of \mathbb{R}^4 . If W were a vector space (under the standard operations in \mathbb{R}^4), then it would be a subspace of \mathbb{R}^4 . But W is not a subspace of \mathbb{R}^4 since the zero vector is not in W. Thus W is not a vector space.
- 12. The set W is a subset of \mathbb{R}^4 . If W were a vector space (under the standard operations in \mathbb{R}^4), then it would be a subspace of \mathbb{R}^4 . But W is not a subspace of \mathbb{R}^4 since the zero vector is not in W. Thus W is not a vector space.
- 13. An element w on W may be written as

$$\mathbf{w} = c \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + d \begin{bmatrix} -6 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -6 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix}$$

where c and d are any real numbers. So W = Col A where $A = \begin{bmatrix} 1 & -6 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$. Thus W is a subspace of \mathbb{R}^3

by Theorem 3, and is a vector space.

14. An element w on W may be written as

$$\mathbf{w} = s \begin{bmatrix} -1\\1\\5 \end{bmatrix} + t \begin{bmatrix} 3\\-2\\-1 \end{bmatrix} = \begin{bmatrix} -1&3\\1&-2\\5&-1 \end{bmatrix} \begin{bmatrix} s\\t \end{bmatrix}$$

where a and b are any real numbers. So W = Col A where $A = \begin{bmatrix} -1 & 3 \\ 1 & -2 \\ 5 & -1 \end{bmatrix}$. Thus W is a subspace of

R3 by Theorem 3, and is a vector space.

15. An element in this set may be written as

$$r\begin{bmatrix} 0\\1\\3\\2\end{bmatrix} + s\begin{bmatrix} 2\\-1\\1\\-1\end{bmatrix} + t\begin{bmatrix} 1\\2\\0\\-1\end{bmatrix} = \begin{bmatrix} 0 & 2 & 1\\1 & -1 & 2\\3 & 1 & 0\\2 & -1 & -1\end{bmatrix} \begin{bmatrix} r\\s\\t\end{bmatrix}$$

where r, s and t are any real numbers. So the set is Col A where $A = \begin{bmatrix} 0 & 2 & 1 \\ 1 & -1 & 2 \\ 3 & 1 & 0 \\ 2 & -1 & -1 \end{bmatrix}$.

16. An element in this set may be written as

$$b\begin{bmatrix}1\\2\\1\\0\end{bmatrix}+c\begin{bmatrix}-1\\0\\3\\1\end{bmatrix}+d\begin{bmatrix}0\\3\\-3\\1\end{bmatrix}=\begin{bmatrix}1&-1&0\\2&0&3\\1&3&-3\\0&1&1\end{bmatrix}\begin{bmatrix}b\\c\\d\end{bmatrix}$$

where b, c and d are any real numbers. So the set is Col A where $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 3 \\ 1 & 3 & -3 \\ 0 & 1 & 1 \end{bmatrix}$.

- 17. The matrix A is a 4×2 matrix. Thus
 - (a) Nul A is a subspace of R2, and
 - (b) Col A is a subspace of ℝ⁴.
- 18. The matrix A is a 4×3 matrix. Thus
 - (a) Nul A is a subspace of R3, and
 - (b) Col A is a subspace of ℝ⁴.
- 19. The matrix A is a 2×5 matrix. Thus
 - (a) Nul A is a subspace of R⁵, and
 - (b) Col A is a subspace of ℝ².
- 20. The matrix A is a 1×5 matrix. Thus
 - (a) Nul A is a subspace of R5, and
 - (b) Col A is a subspace of R¹ = R.
- 21. Either column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general solution of Ax = 0 in terms of the free variables. Since

nonzero value (say $x_2 = 3$) gives the nonzero vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

which is in Nul A

22. Any column of A is a nonzero vector in Col A. To find a nonzero vector in Nul A, find the general solution of Ax = 0 in terms of the free variables. Since

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

the general solution is $x_1 = -x_3$, $x_2 = -x_3$, with x_3 free. Letting x_3 be a nonzero value (say $x_3 = -1$) gives the nonzero vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

which is in Nul A.

23. Consider the system with augmented matrix [A w]. Since

$$\begin{bmatrix} A & \mathbf{w} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in Col A. Also, since

$$A\mathbf{w} = \begin{bmatrix} -2 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

w is in Nul A.

24. Consider the system with augmented matrix [A w]. Since

$$[A \quad \mathbf{w}] = \begin{bmatrix} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & -1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in Col A. Also, since

$$A\mathbf{w} = \begin{bmatrix} 10 & -8 & -2 & -2 \\ 0 & 2 & 2 & -2 \\ 1 & -1 & 6 & 0 \\ 1 & 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

w is in Nul A.

- a. True. See the definition before Example 1.
 - b. False. See Theorem 2.
 - c. True. See the remark just before Example 4.
 - d. False. The equation Ax = b must be consistent for every b. See #7 in the table on page 204.
 - e. True. See Figure 2.
 - f. True. See the remark after Theorem 3.
- 26. a. True. See Theorem 2.
 - b. True. See Theorem 3.
 - c. False. See the box after Theorem 3.
 - d. True. See the paragraph after the definition of a linear transformation.
 - e. True. See Figure 2.
 - f. True. See the paragraph before Example 8.

27. Let *A* be the coefficient matrix of the given homogeneous system of equations. Since
$$A\mathbf{x} = \mathbf{0}$$
 for $\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$, \mathbf{x} is in Nul*A*. Since Nul*A* is a subspace of \mathbb{R}^3 , it is closed under scalar multiplication. Thus

$$10\mathbf{x} = \begin{bmatrix} 30 \\ 20 \\ -10 \end{bmatrix}$$
 is also in NulA, and $x_1 = 30$, $x_2 = 20$, $x_3 = -10$ is also a solution to the system of

equations.

28. Let *A* be the coefficient matrix of the given systems of equations. Since the first system has a solution, the constant vector
$$\mathbf{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 is in Col*A*. Since Col *A* is a subspace of \mathbb{R}^3 , it is closed under

scalar multiplication. Thus
$$5\mathbf{b} = \begin{bmatrix} 0 \\ 5 \\ 45 \end{bmatrix}$$
 is also in Col A, and the second system of equations must thus

have a solution.

- 29. a. Since A0 = 0, the zero vector is in Col A.
 - b. Since Ax + Aw = A(x + w), Ax + Aw is in Col A.
 - c. Since c(Ax) = A(cx), cAx is in Col A.
- 30. Since $T(\mathbf{0}_V) = \mathbf{0}_W$, the zero vector $\mathbf{0}_W$ of W is in the range of T. Let $T(\mathbf{x})$ and $T(\mathbf{w})$ be typical elements in the range of T. Then since $T(\mathbf{x}) + T(\mathbf{w}) = T(\mathbf{x} + \mathbf{w}), T(\mathbf{x}) + T(\mathbf{w})$ is in the range of T and the range of T is closed under vector addition. Let C be any scalar. Then since $CT(\mathbf{x}) = T(C\mathbf{x}), CT(\mathbf{x})$ is in the range of T and the range of T is closed under scalar multiplication. Hence the range of T is a subspace of T.
- 31. a. Let p and q be arbitary polynomials in \mathbb{P}_2 , and let c be any scalar. Then

$$T(\mathbf{p} + \mathbf{q}) = \begin{bmatrix} (\mathbf{p} + \mathbf{q})(0) \\ (\mathbf{p} + \mathbf{q})(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) + \mathbf{q}(0) \\ \mathbf{p}(1) + \mathbf{q}(1) \end{bmatrix} = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} + \begin{bmatrix} \mathbf{q}(0) \\ \mathbf{q}(1) \end{bmatrix} = T(\mathbf{p}) + T(\mathbf{q})$$

and

$$T(c\mathbf{p}) = \begin{bmatrix} (c\mathbf{p})(0) \\ (c\mathbf{p})(1) \end{bmatrix} = c \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(1) \end{bmatrix} = cT(\mathbf{p})$$

so T is a linear transformation.

b. Any quadratic polynomial **q** for which $\mathbf{q}(0) = 0$ and $\mathbf{q}(1) = 0$ will be in the kernel of T. The polynomial **q** must then be a multiple of $\mathbf{p}(t) = t(t-1)$. Given any vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 , the polynomial $\mathbf{p} = x_1 + (x_2 - x_1)t$ has $\mathbf{p}(0) = x_1$ and $\mathbf{p}(1) = x_2$. Thus the range of T is all of \mathbb{R}^2 .

- 32. Any quadratic polynomial \mathbf{q} for which $\mathbf{q}(0) = 0$ will be in the kernel of T. The polynomial \mathbf{q} must then be $\mathbf{q} = at + bt^2$. Thus the polynomials $\mathbf{p}_1(t) = t$ and $\mathbf{p}_2(t) = t^2$ span the kernel of T. If a vector is in the range of T, it must be of the form $\begin{bmatrix} a \\ a \end{bmatrix}$. If a vector is of this form, it is the image of the polynomial $\mathbf{p}(t) = a$ in \mathbf{P}_2 . Thus the range of T is $\left\{ \begin{bmatrix} a \\ a \end{bmatrix} : a \text{ real} \right\}$.
- 33. a. For any A and B in $M_{2\times 2}$ and for any scalar c,

$$T(A+B) = (A+B) + (A+B)^T = A+B+A^T+B^T = (A+A^T) + (B+B^T) = T(A) + T(B)$$

and

$$T(cA) = (cA)^T = c(A^T) = cT(A)$$

so T is a linear transformation

b. Let B be an element of $M_{2\times 2}$ with $B^T = B$, and let $A = \frac{1}{2}B$. Then

$$T(A) = A + A^{T} = \frac{1}{2}B + (\frac{1}{2}B)^{T} = \frac{1}{2}B + \frac{1}{2}B^{T} = \frac{1}{2}B + \frac{1}{2}B = B$$

c. Part b. showed that the range of T contains the set of all B in $M_{2\times 2}$ with $B^T = B$. It must also be shown that any B in the range of T has this property. Let B be in the range of T. Then B = T(A) for some A in $M_{2\times 2}$. Then $B = A + A^T$, and

$$B^{T} = (A + A^{T})^{T} = A^{T} + (A^{T})^{T} = A^{T} + A = A + A^{T} = B$$

so B has the property that $B^T = B$.

d. Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be in the kernel of T. Then $T(A) = A + A^T = 0$, so

$$A + A^{T} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} 2a & c + b \\ b + c & 2d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Solving it is found that a = d = 0 and c = -b. Thus the kernel of T is $\begin{cases} \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$: b real.

- 34. Let f and g be any elements in C[0, 1] and let c be any scalar. Then T(f) is the antiderivative F of f with F(0) = 0 and T(g) is the antiderivative G of g with G(0) = 0. By the rules for antidifferentiation F+G will be an antiderivative of f+g, and (F+G)(0) = F(0)+G(0) = 0+0 = 0. Thus T(f+g) = T(f) + T(g). Likewise cF will be an antiderivative of cf, and (cF)(0) = cF(0) = c0 = 0. Thus T(cf) = cT(f), and T is a linear transformation. To find the kernel of T, we must find all functions f in C[0,1] with antiderivative equal to the zero function. The only function with this property is the zero function 0, so the kernel of T is {0}.
- 35. Since U is a subspace of V, $\mathbf{0}_V$ is in U. Since T is linear, $T(\mathbf{0}_V) = \mathbf{0}_W$. So $\mathbf{0}_W$ is in T(U). Let $T(\mathbf{x})$ and $T(\mathbf{y})$ be typical elements in T(U). Then \mathbf{x} and \mathbf{y} are in U, and since U is a subspace of V, $\mathbf{x} + \mathbf{y}$ is also in U. Since T is linear, $T(\mathbf{x}) + T(\mathbf{y}) = T(\mathbf{x} + \mathbf{y})$. So $T(\mathbf{x}) + T(\mathbf{y})$ is in T(U), and T(U) is closed under vector addition. Let C be any scalar. Then since C is in C and C is a subspace of C is in C. Since C

is linear, $T(c\mathbf{x}) = cT(\mathbf{x})$ and $cT(\mathbf{x})$ is in T(U). Thus T(U) is closed under scalar multiplication, and T(U) is a subspace of W.

- 36. Since Z is a subspace of W, 0_w is in Z. Since T is linear, $T(0_V) = 0_w$. So 0_V is in U. Let x and y be typical elements in U. Then T(x) and T(y) are in Z, and since Z is a subspace of W, T(x) + T(y) is also in Z. Since T is linear, T(x) + T(y) = T(x+y). So T(x+y) is in Z, and X + y is in Z. Thus Z is closed under vector addition. Let Z be any scalar. Then since Z is in Z, is in Z. Since Z is a subspace of Z is also in Z. Since Z is also in Z. Since Z is an Z is in Z and Z is in Z. Thus Z is in Z and Z is closed under scalar multiplication. Hence Z is a subspace of Z.
- 37. [M] Consider the system with augmented matrix [A w]. Since

$$[A \quad \mathbf{w}] = \begin{bmatrix} 1 & 0 & 0 & -1/95 & 1/95 \\ 0 & 1 & 0 & 39/19 & -20/19 \\ 0 & 0 & 1 & 267/95 & -172/95 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in ColA. Also, since

$$\mathbf{A}\mathbf{w} = \begin{bmatrix} 7 & 6 & -4 & 1 \\ -5 & -1 & 0 & -2 \\ 9 & -11 & 7 & -3 \\ 19 & -9 & 7 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

w is not in NulA.

38. [M] Consider the system with augmented matrix [A w]. Since

$$[A \quad \mathbf{w}] = \begin{bmatrix} 1 & 0 & -1 & 0 & -2 \\ 0 & 1 & -2 & 0 & -3 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

the system is consistent and w is in ColA. Also, since

$$A\mathbf{w} = \begin{bmatrix} -8 & 5 & -2 & 0 \\ -5 & 2 & 1 & -2 \\ 10 & -8 & 6 & -3 \\ 3 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

w is in NulA.

39. [M]

a. To show that \mathbf{a}_3 and \mathbf{a}_5 are in the column space of B, we can row reduce the matrices $\begin{bmatrix} B & \mathbf{a}_3 \end{bmatrix}$ and $\begin{bmatrix} B & \mathbf{a}_3 \end{bmatrix}$:

$$\begin{bmatrix} B & \mathbf{a}_3 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & 1/3 \\ 0 & 1 & 0 & 1/3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} B & \mathbf{a}_5 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 & 10/3 \\ 0 & 1 & 0 & -26/3 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since both these systems are consistent, a_3 and a_5 are in the column space of B. Notice that the same conclusions can be drawn by observing the reduced row echelon form for A:

$$A = \begin{bmatrix} 1 & 0 & 1/3 & 0 & 10/3 \\ 0 & 1 & 1/3 & 0 & -26/3 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

b. We find the general solution of Ax = 0 in terms of the free variables by using the reduced row echelon form of A given above: $x_1 = (-1/3)x_3 - (10/3)x_5$, $x_2 = (-1/3)x_3 + (26/3)x_5$, $x_4 = 4x_5$ with x_3 and x_5 free. So

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} -1/3 \\ -1/3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -10/3 \\ 26/3 \\ 0 \\ 4 \\ 1 \end{bmatrix}$$

and a spanning set for Nul A is

$$\left\{ \begin{bmatrix} -1/3 \\ -1/3 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -10/3 \\ 26/3 \\ 0 \\ 4 \\ 1 \end{bmatrix} \right\}.$$

c. The reduced row echelon form of A shows that the columns of A are linearly dependent and do not span R⁴. Thus by Theorem 12 in Section 1.9, T is neither one-to-one nor onto.