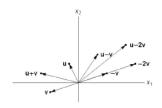
2.
$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3+2 \\ 2-1 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
.

Using the definitions carefully

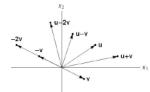
$$\mathbf{u} - 2\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + (-2) \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} (-2)(2) \\ (-2)(-1) \end{bmatrix} = \begin{bmatrix} 3-4 \\ 2+2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}, \text{ or, more quickly,}$$

$$\mathbf{u} - 2\mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3-4 \\ 2+2 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}. \text{ The intermediate step is often not written.}$$

3.



4.



5.
$$x_1 \begin{bmatrix} 3 \\ -2 \\ 8 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ 0 \\ -9 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}$$
, $\begin{bmatrix} 3x_1 \\ -2x_1 \\ 8x_1 \end{bmatrix} + \begin{bmatrix} 5x_2 \\ 0 \\ -9x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}$, $\begin{bmatrix} 3x_1 + 5x_2 \\ -2x_1 \\ 8x_1 - 9x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \\ 8 \end{bmatrix}$

$$3x_1 + 5x_2 = 2$$

$$-2x_1 = -3$$

$$8x_1 - 9x_2 = 8$$

Usually the intermediate steps are not displayed.

6.
$$x_1 \begin{bmatrix} 3 \\ -2 \end{bmatrix} + x_2 \begin{bmatrix} 7 \\ 3 \end{bmatrix} + x_3 \begin{bmatrix} -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3x_1 \\ -2x_1 \end{bmatrix} + \begin{bmatrix} 7x_2 \\ 3x_2 \end{bmatrix} + \begin{bmatrix} -2x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 3x_1 + 7x_2 - 2x_3 \\ -2x_1 + 3x_2 + x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$3x_2 + 7x_2 - 2x_3 = 0$$

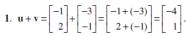
$$-2x_1 + 3x_2 + x_3 = 0$$

Usually the intermediate steps are not displayed.

 See the figure below. Since the grid can be extended in every direction, the figure suggests that every vector in R² can be written as a linear combination of u and v.

To write a vector **a** as a linear combination of **u** and **v**, imagine walking from the origin to **a** along the grid "streets" and keep track of how many "blocks" you travel in the **u**-direction and how many in the **v**-direction.

- a. To reach a from the origin, you might travel 1 unit in the u-direction and -2 units in the v-direction (that is, 2 units in the negative v-direction). Hence a = u 2v.
- b. To reach b from the origin, travel 2 units in the u-direction and -2 units in the v-direction. So
 b = 2u 2v. Or, use the fact that b is 1 unit in the u-direction from a, so that



Using the definitions carefully,

$$\mathbf{u} - 2\mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + (-2) \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + \begin{bmatrix} (-2)(-3) \\ (-2)(-1) \end{bmatrix} = \begin{bmatrix} -1+6 \\ 2+2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \text{ or, more quickly,}$$

$$\mathbf{u} - 2\mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} - 2 \begin{bmatrix} -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -1+6 \\ 2+2 \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
. The intermediate step is often not written.

$$b = a + u = (u - 2v) + u = 2u - 2v$$

c. The vector c is -1.5 units from b in the v-direction, so

$$c = b - 1.5v = (2u - 2v) - 1.5v = 2u - 3.5v$$

d. The "map" suggests that you can reach d if you travel 3 units in the u-direction and -4 units in the v-direction. If you prefer to stay on the paths displayed on the map, you might travel from the origin to -3v, then move 3 units in the u-direction, and finally move -1 unit in the v-direction. So

$$d = -3v + 3u - v = 3u - 4v$$

Another solution is

$$d = b - 2v + u = (2u - 2v) - 2v + u = 3u - 4v$$

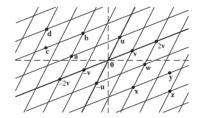


Figure for Exercises 7 and 8

- See the figure above. Since the grid can be extended in every direction, the figure suggests that every vector in R² can be written as a linear combination of u and v.
 - w. To reach w from the origin, travel -1 units in the u-direction (that is, 1 unit in the negative u-direction) and travel 2 units in the v-direction. Thus, w = (-1)u + 2v, or w = 2v u.
 - x. To reach x from the origin, travel 2 units in the v-direction and -2 units in the u-direction. Thus,
 x = -2u + 2v. Or, use the fact that x is -1 units in the u-direction from w, so that

$$x = w - u = (-u + 2v) - u = -2u + 2v$$

y. The vector y is 1.5 units from x in the v-direction, so

$$y = x + 1.5v = (-2u + 2v) + 1.5v = -2u + 3.5v$$

z. The map suggests that you can reach z if you travel 4 units in the v-direction and -3 units in the u-direction. So z = 4v - 3u = -3u + 4v. If you prefer to stay on the paths displayed on the "map," you might travel from the origin to -2u, then 4 units in the v-direction, and finally move -1 unit in the u-direction. So

$$z = -2u + 4v - u = -3u + 4v$$

Usually, the intermediate calculations are not displayed.

Usually, the intermediate calculations are not displayed.

11. The question

Is **b** a linear combination of a_1 , a_2 , and a_3 ? is equivalent to the question

Does the vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$ have a solution? The equation

$$x_{1} \begin{bmatrix} 1\\-2\\0 \end{bmatrix} + x_{2} \begin{bmatrix} 0\\1\\2 \end{bmatrix} + x_{3} \begin{bmatrix} 5\\-6\\8 \end{bmatrix} = \begin{bmatrix} 2\\-1\\6 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{a}_{1} \qquad \mathbf{a}_{2} \qquad \mathbf{a}_{3} \qquad \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$M = \begin{bmatrix} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{bmatrix}$$

Row reduce M until the pivot positions are visible:

$$M \sim \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6 \end{bmatrix} \sim \begin{bmatrix} \widehat{1} & 0 & 5 & 2 \\ 0 & \widehat{1} & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and therefore \mathbf{b} is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

12. The equation

$$x_{1} \begin{bmatrix} 1\\0\\1 \end{bmatrix} + x_{2} \begin{bmatrix} -2\\3\\-2 \end{bmatrix} + x_{3} \begin{bmatrix} -6\\7\\5 \end{bmatrix} = \begin{bmatrix} 11\\-5\\9 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{a}_{1} \qquad \mathbf{a}_{2} \qquad \mathbf{a}_{3} \qquad \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$M = \begin{bmatrix} 1 & -2 & -6 & 11 \\ 0 & 3 & 7 & -5 \\ 1 & -2 & 5 & 9 \end{bmatrix}$$

Row reduce M until the pivot positions are visible:

$$M \sim \begin{bmatrix} 1 & -2 & -6 & 11 \\ 0 & 3 & 7 & -5 \\ 0 & 0 & 12 & -2 \end{bmatrix}$$

The linear system corresponding to M has a solution, so the vector equation (*) has a solution, and therefore \mathbf{b} is a linear combination of \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 .

13. Denote the columns of A by a₁, a₂, a₃. To determine if b is a linear combination of these columns, use the boxed fact in the subsection *Linear Combinations*. Row reduce the augmented matrix [a₁ a₂ a₃ b] until you reach echelon form:

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}] = \begin{bmatrix} 1 & -4 & 2 & 3 \\ 0 & 3 & 5 & -7 \\ -2 & 8 & -4 & -3 \end{bmatrix} \sim \begin{bmatrix} \mathbf{\hat{j}} & -4 & 2 & 3 \\ 0 & \mathbf{\hat{j}} & 5 & -7 \\ 0 & 0 & 0 & \mathbf{\hat{j}} \end{bmatrix}$$

The system for this augmented matrix is inconsistent, so \mathbf{b} is *not* a linear combination of the columns of A.

14. Row reduce the augmented matrix [a₁ a₂ a₃ b] until you reach echelon form:

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}] = \begin{bmatrix} 1 & 0 & 5 & 2 \\ -2 & 1 & -6 & -1 \\ 0 & 2 & 8 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 2 & 8 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 & 2 \\ 0 & 1 & 4 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

The linear system corresponding to this matrix *has* a solution, so b is a linear combination of the columns of A

15.
$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{b}] = \begin{bmatrix} 1 & -5 & 3 \\ 3 & -8 & -5 \\ -1 & 2 & h \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 3 \\ 0 & 7 & -14 \\ 0 & -3 & h+3 \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 3 \\ 0 & 1 & -2 \\ 0 & -3 & h+3 \end{bmatrix} \sim \begin{bmatrix} 1 & -5 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & h-3 \end{bmatrix}$$
. The vector \mathbf{b}

is in Span $\{a_1, a_2\}$ when h-3 is zero, that is, when h=3

16.
$$[\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{y}] = \begin{bmatrix} 1 & -2 & h \\ 0 & 1 & -3 \\ -2 & 7 & -5 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & h \\ 0 & 1 & -3 \\ 0 & 3 & -5 + 2h \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & h \\ 0 & 1 & -3 \\ 0 & 0 & 4 + 2h \end{bmatrix}$$
. The vector \mathbf{y} is in

17. Noninteger weights are acceptable, of course, but some simple choices are $0 \cdot v_1 + 0 \cdot v_2 = 0$, and

$$1 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \quad 0 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \begin{bmatrix} -4 \\ 0 \\ 1 \end{bmatrix}, \quad 1 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}, \quad 1 \cdot \mathbf{v}_1 - 1 \cdot \mathbf{v}_2 = \begin{bmatrix} 7 \\ 1 \\ 1 \end{bmatrix}$$

18. Some likely choices are $0 \cdot v_1 + 0 \cdot v_2 = 0$, and

(3

$$1 \cdot \mathbf{v}_1 + 0 \cdot \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad 0 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}, \quad 1 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2 = \begin{bmatrix} -1 \\ 4 \\ -2 \end{bmatrix}, \quad 1 \cdot \mathbf{v}_1 - 1 \cdot \mathbf{v}_2 = \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix}$$

By inspection, v₂ = (3/2)v₁. Any linear combination of v₁ and v₂ is actually just a multiple of v₁. For instance.

$$a\mathbf{v}_1 + b\mathbf{v}_2 = a\mathbf{v}_1 + b(3/2)\mathbf{v}_1 = (a + 3b/2)\mathbf{v}_1$$

So Span $\{v_1, v_2\}$ is the set of points on the line through v_1 and 0.

Note: Exercises 19 and 20 prepare the way for ideas in Sections 1.4 and 1.7.

20. Span{v₁, v₂} is a plane in R³ through the origin, because neither vector in this problem is a multiple of the other.

21. Let
$$\mathbf{y} = \begin{bmatrix} h \\ k \end{bmatrix}$$
. Then $[\mathbf{u} \ \mathbf{v} \ \mathbf{y}] = \begin{bmatrix} 2 & 2 & h \\ -1 & 1 & k \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & h \\ 0 & 2 & k+h/2 \end{bmatrix}$. This augmented matrix corresponds to a consistent system for all h and k . So \mathbf{v} is in Span $\{\mathbf{u}, \mathbf{v}\}$ for all h and k .

- 22. Construct any 3×4 matrix in echelon form that corresponds to an inconsistent system. Perform sufficient row operations on the matrix to eliminate all zero entries in the first three columns.
- 23. a. False. The alternative notation for a (column) vector is (-4, 3), using parentheses and commas.
 - b. False. Plot the points to verify this. Or, see the statement preceding Example 3. If $\begin{bmatrix} -5 \\ 2 \end{bmatrix}$ were on the line through $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$ and the origin, then $\begin{bmatrix} -5 \\ 2 \end{bmatrix}$ would have to be a multiple of $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$, which is not the case.
 - True. See the line displayed just before Example 4.
 - d. True. See the box that discusses the matrix in (5).

- e. False. The statement is often true, but Span{u, v} is not a plane when v is a multiple of u, or when u is the zero vector.
- 24. a. False. Span{u, v} can be a plane.
 - b. True. See the beginning of the subsection Vectors in \mathbb{R}^n .
 - c. True. See the comment following the definition of Span $\{v_1, ..., v_p\}$.
 - d. False. (u v) + v = u v + v = u.
 - False. Setting all the weights equal to zero results in a legitimate linear combination of a set of vectors.
- 25. a. There are only three vectors in the set $\{a_1, a_2, a_3\}$, and b is not one of them.
 - b. There are infinitely many vectors in W = Span{a₁, a₂, a₃}. To determine if b is in W, use the method of Exercise 13.

$$[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3 \ \mathbf{b}] = \begin{bmatrix} 1 & 0 & -4 & 4 \\ 0 & 3 & -2 & 1 \\ -2 & 6 & 3 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -4 & 4 \\ 0 & 3 & -2 & 1 \\ 0 & 6 & -5 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -4 & 4 \\ 0 & 3 & -2 & 1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

The system for this augmented matrix is consistent, so b is in W.

c. $a_1 = 1a_1 + 0a_2 + 0a_3$. See the discussion in the text following the definition of Span $\{v_1, ..., v_p\}$.

$$\mathbf{26. \ a. \ [a_1 \ a_2 \ a_3 \ b]} = \begin{bmatrix} 2 & 0 & 6 & 10 \\ -1 & 8 & 5 & 3 \\ 1 & -2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 5 \\ -1 & 8 & 5 & 3 \\ 1 & -2 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 8 & 8 & 8 \\ 0 & -2 & -2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 8 & 8 & 8 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

No, b is not a linear combination of the columns of A, that is, b is not in W.

- **b.** The second column of A is in W because $\mathbf{a}_2 = 0 \cdot \mathbf{a}_1 + 1 \cdot \mathbf{a}_2 + 0 \cdot \mathbf{a}_3$.
- 27. a. $5v_1$ is the output of 5 days' operation of mine #1.
 - **b.** The total output is $x_1\mathbf{v}_1 + x_2\mathbf{v}_2$, so x_1 and x_2 should satisfy $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \begin{bmatrix} 240 \\ 2824 \end{bmatrix}$

c. [M] Reduce the augmented matrix
$$\begin{bmatrix} 30 & 40 & 240 \\ 600 & 380 & 2824 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1.73 \\ 0 & 1 & 4.70 \end{bmatrix}$$
.

Operate mine #1 for 1.73 days and mine #2 for 4.70 days. (This is an approximate solution.)

- 28. a. The amount of heat produced when the steam plant burns x_1 tons of anthracite and x_2 tons of bituminous coal is $27.6x_1 + 30.2x_2$ million Btu.
 - **b**. The total output produced by x_1 tons of anthracite and x_2 tons of bituminous coal is given by the

vector
$$x_1 \begin{bmatrix} 27.6 \\ 3100 \\ 250 \end{bmatrix} + x_2 \begin{bmatrix} 30.2 \\ 6400 \\ 360 \end{bmatrix}$$
.

c. [M] The appropriate values for
$$x_1$$
 and x_2 satisfy $x_1 \begin{bmatrix} 27.6 \\ 3100 \\ 250 \end{bmatrix} + x_2 \begin{bmatrix} 30.2 \\ 6400 \\ 360 \end{bmatrix} = \begin{bmatrix} 162 \\ 23,610 \\ 1,623 \end{bmatrix}$

To solve, row reduce the augmented matrix:

The steam plant burned 3.9 tons of anthracite coal and 1.8 tons of bituminous coal.

29. The total mass is 4 + 2 + 3 + 5 = 14. So $\mathbf{v} = (4\mathbf{v}_1 + 2\mathbf{v}_2 + 3\mathbf{v}_3 + 5\mathbf{v}_4)/14$. That is,

$$\mathbf{v} = \frac{1}{14} \begin{pmatrix} 4 & 2 \\ -2 \\ 4 \end{pmatrix} + 2 \begin{pmatrix} -4 \\ 2 \\ 3 \end{pmatrix} + 3 \begin{pmatrix} 4 \\ 0 \\ -2 \end{pmatrix} + 5 \begin{pmatrix} 1 \\ -6 \\ 0 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 8 - 8 + 12 + 5 \\ -8 + 4 + 0 - 30 \\ 16 + 6 - 6 + 0 \end{pmatrix} = \begin{bmatrix} 17/14 \\ -17/7 \\ 8/7 \end{bmatrix} \approx \begin{bmatrix} 1.214 \\ -2.429 \\ 1.143 \end{bmatrix}$$

30. Let m be the total mass of the system. By definition,

$$\mathbf{v} = \frac{1}{m}(m_1\mathbf{v}_1 + \dots + m_k\mathbf{v}_k) = \frac{m_1}{m}\mathbf{v}_1 + \dots + \frac{m_k}{m}\mathbf{v}_k$$

The second expression displays v as a linear combination of $v_1, ..., v_k$, which shows that v is in $Span\{v_1, ..., v_k\}$.

- 31. a. The center of mass is $\frac{1}{3} \left(1 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + 1 \cdot \begin{bmatrix} 8 \\ 1 \end{bmatrix} + 1 \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right) = \begin{bmatrix} 10/3 \\ 2 \end{bmatrix}$.
 - b. The total mass of the new system is 9 grams. The three masses added, w₁, w₂, and w₃, satisfy the equation

$$\frac{1}{9} \left((w_1 + 1) \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (w_2 + 1) \cdot \begin{bmatrix} 8 \\ 1 \end{bmatrix} + (w_3 + 1) \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right) = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

which can be rearranged to

$$(w_1+1) \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (w_2+1) \cdot \begin{bmatrix} 8 \\ 1 \end{bmatrix} + (w_3+1) \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 18 \\ 18 \end{bmatrix}$$

and

$$w_1 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + w_2 \cdot \begin{bmatrix} 8 \\ 1 \end{bmatrix} + w_3 \cdot \begin{bmatrix} 2 \\ 4 \end{bmatrix} = \begin{bmatrix} 8 \\ 12 \end{bmatrix}$$

The condition $w_1 + w_2 + w_3 = 6$ and the vector equation above combine to produce a system of three equations whose augmented matrix is shown below, along with a sequence of row operations:

$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 8 & 2 & 8 \\ 1 & 1 & 4 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 8 & 2 & 8 \\ 0 & 0 & 3 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 8 & 2 & 8 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & 0 & 4 \\ 0 & 8 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3.5 \\ 0 & 8 & 0 & 4 \\ 0 & 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3.5 \\ 0 & 1 & 0 & .5 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Answer: Add 3.5 g at (0, 1), add .5 g at (8, 1), and add 2 g at (2, 4).

Extra problem: Ignore the mass of the plate, and distribute 6 gm at the three vertices to make the center of mass at (2, 2). Answer: Place 3 g at (0, 1), 1 g at (8, 1), and 2 g at (2, 4).

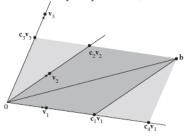
32. See the parallelograms drawn on the figure from the text that accompanies this exercise. Here c₁, c₂, c₃, and c₄ are suitable scalars. The darker parallelogram shows that b is a linear combination of v₁ and v₂, that is

$$c_1$$
v₁ + c_2 **v**₂ + 0 ·**v**₃ = **b**

The larger parallelogram shows that b is a linear combination of v_1 and v_3 , that is,

$$c_4$$
v₁ + 0 ·**v**₂ + c_3 **v**₃ = **b**

So the equation $x_1v_1 + x_2v_2 + x_3v_3 = b$ has at least two solutions, not just one solution. (In fact, the equation has infinitely many solutions.)



- 33. a. For j = 1, ..., n, the jth entry of $(\mathbf{u} + \mathbf{v}) + \mathbf{w}$ is $(u_j + v_j) + w_j$. By associativity of addition in \mathbf{R} , this entry equals $u_j + (v_j + w_j)$, which is the jth entry of $\mathbf{u} + (\mathbf{v} + \mathbf{w})$. By definition of equality of vectors, $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$.
 - b. For any scalar c, the jth entry of $c(\mathbf{u} + \mathbf{v})$ is $c(u_j + v_j)$, and the jth entry of $c\mathbf{u} + c\mathbf{v}$ is $cu_j + cv_j$ (by definition of scalar multiplication and vector addition). These entries are equal, by a distributive law in \mathbf{R} . So $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$.
- **34.** a. For $j = 1, ..., n, u_j + (-1)u_j = (-1)u_j + u_j = 0$, by properties of **R**. By vector equality, $\mathbf{u} + (-1)\mathbf{u} = (-1)\mathbf{u} + \mathbf{u} = \mathbf{0}$.
 - b. For scalars c and d, the jth entries of $c(d\mathbf{u})$ and $(cd)\mathbf{u}$ are $c(du_j)$ and $(cd)u_j$, respectively. These entries in \mathbf{R} are equal, so the vectors $c(d\mathbf{u})$ and $(cd)\mathbf{u}$ are equal.