
Convergence Analysis of Iterative Methods 
 
We want to answer two questions:   

1. When will the Jacobi or Gauss-Seidel Methods work?  That is, under what conditions 
will they produce a sequence of approximations  which 
converge to the true solution? 

  , , , , )3()2()1()0( Kxxxx

2. When they do work, how fast will the convergence to the true solution be?  That is, 
what will the rate of convergence be?   

 
In general, an iterative method that finds the solution to bx =A  takes the form  

bxx +=+ )()1( kk NM , 
so that  

bxx 1)(1)1( −−+ += MNM kk , 
which we can rewrite as 

bxx ~)()1( +=+ kk B , 
where  and  NMB 1−= bb 1~ −= M . 
 
If the current approximation  is, in fact, the exact solution , then the iterative method 
should certainly find that the next iteration x  is also the exact solution .  That is, it should 
be that 

)(kx x
)1( +k x

bxx ~+= B , so that 

bxbxxbxx =−⇒+=⇒+= )(               ~ NMNMB .   

Of course since the original problem we are trying to solve is bx =A , it must be that M and N 
are chosen so that .  On the other hand, it turns out that choosing  does not 
necessarily guarantee that the iterative method will find a sequence of vectors 

  that converges to the true solution .   

NMA −=

,...

NMA −=

,,, )3()2()1()0( xxxx x
 
Whether or not a particular method will work will depend on the matrix .  In fact, it 
turns out that in general the matrix B completely determines the convergence (or not) of an 
iterative method.  In particular, the initial guess generally has no effect on whether or not a 
particular method is convergent or on the rate of convergence, although if the initial guess is far 
away from the true solution, more iterations will be required to get an acceptable approximation 
for the true solution than if the initial guess were closer to the true solution. 

NMB 1−=

  
To understand the convergence properties of an iterative method bxx ~)()1( +=+ kk B , we subtract 
the equation bxx ~)()1( +=+ kk B  from the equation bxx ~

+= B
)(kxx −
, which gives us 

.  That is, where the current error is , we have ))(kx−()1(k B xxx =− + ) =(ke
)0()2(2)2()1()( )( eeeee kkkkk BBBBB ===== −−− L . 

To be clear, the superscript of matrix B is the power of B, while the superscript of vector e 
(inside parentheses) is the iteration number to which this particular error corresponds.   We want 

 as .  Since , then we will have ||  0e →)(k ∞→k |||| ||||    ||||    |||| 00
)( eee kkk BB ≤= 0 ||)( →ke
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(which is the same as ) if ||0e →)(k 1 ||<B .  Just like the norm of a vector, the norm  of 
matrix B tells us the “size” of the matrix, or more precisely, how much bigger or smaller 

|||| B
vB  will 

be compare to v .  As we show below, there is a particular B  matrix for each of the Jacobi and 
Gauss-Seidel Methods.  For each method, the smaller ||  is, the faster the method will 
converge, or if || , neither method will normally converge. 
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One condition sometimes encountered in practice that will guarantee that  is that matrix 
A is strictly diagonally dominant.  A matrix is strictly diagonally dominant if for each of its rows, 
the absolute value of the diagonal element is larger than the sum of the absolute values of the off-
diagonal elements.  That is, 

1 |||| <B

 

      where        we have      . 
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Example 3    Matrix  is diagonally dominant and matrix  is not: 2
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Analysis of Jacobi and Gauss-Seidel Methods for 2 x 2 Systems 
 
We will continue our discussion with only the 2 x 2 case, as the Java applet to be used in doing 
the homework exercises deals with this case.  As discussed earlier, the Jacobi and Gauss-Seidel 
Methods are both of the form b~)1+ , where their B matrices for the 2 x 2 case are 

Method B 

Jacobi 



















−

−
=








−




−

0

0
      

0
00

)

22

21

11

12

12
1

22
a
a

a
a

a
a

a
U

Gauss-Seidel 




















−

=











−

−

2211

2112

11

12

12
1

2221

111

 
 0  

0  
      

0
(

aa
aa

a
a

aa
a

 

 

 2



Notice for both methods that the diagonal elements of A must be non-zero,  and 011 =a 022 =a .  
It turns out that if n x n matrix B has a full set of n distinct eigenvectors (which is always the case 
for 2 x 2 systems using Jacobi or Gauss-Seidel Methods), then max || λ=B|| , where maxλ  is the 
eigenvalue of matrix B with largest magnitude.  Consequently, in the 2 x 2 case, the Jacobi and 
Gauss-Seidel Methods are guaranteed to converge if all of the eigenvalues of the matrix B 
corresponding to that method are of magnitude < 1.  This also includes the case that B has 
complex eigenvalues.  We note that for n x n systems, things are more complicated. 
 
We have now answered the first question posed at the beginning of this section.  Because  

, the second question is also answered.  For example, if || , then the 
error  will be cut approximately in half by each additional iteration.  The size 

 is directly proportional to the size of the eigenvalues of B.  Consequently, a major goal in 
designing an iterative method is that the corresponding B matrix has eigenvalues that are as small 
as possible. 

|||| ||||    |||| 0
)( ee kk B≤

)()( kk xxe −=
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The eigenvalues and corresponding eigenvectors for the Jacobi and Gauss-Seidel Methods are 
 

Method Eigenvalues Eigenvectors 
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Notice for both methods that we will have 1 || max <= λB||  if 1  2211

2112
 
 

<aa
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.  Also notice that the 
non-zero eigenvalue for the Gauss-Seidel Method is the square of the two eigenvalues for the 
Jacobi Method.  As a result, when dealing with 2 x 2 systems, || , which means 
that the rate of convergence of the Gauss-Seidel Method is the square of the rate of convergence 
of the Jacobi Method.  For example, if each iteration of the Jacobi Method causes the error to be 
halved, each iteration of the Gauss-Seidel Method will cause the error to be quartered, since 

2||Jacobi

( )22
1

4
1 = .  Another way to look at this is that, for 2 x 2 systems, approximately twice as many 
iterations of the Jacobi Method iterations are needed to achieve the same level of accuracy (to the 
true solution ) as the Gauss-Seidel Method.  We note that for general n x n systems, things are 
more complicated than (but similar to) the 2 x 2 case that we have been discussing. 

x
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SOR Method 
 
A third iterative method, called the Successive Overrelaxation (SOR) Method, is an 
improvement on the Gauss-Seidel Method.  The basic idea is this: in finding given , 
we move a certain amount in a particular direction from  to   This direction is simply 
the vector , since .  Assuming that the direction from 

 to  is taking us closer, but not all the way, to the true solution , the basic idea of the 
SOR Method then is to move in the same direction , but farther along that direction.  

)1( +kx )(kx
)(kx

))k

(x−

.)1( +kx
)()1( kk xx −+

)1+
( ()1()()1( kkk xxxx −+= ++

)1(kx +

)(kx (kx x
)k

 
To derive the SOR Method from the Gauss-Seidel Method, notice that we could also write the 
Gauss-Seidel equation as  

)()1()1( kkk ULD xxbx −−= ++  
so that 

][ )()1(1)1( kkk ULD xxbx −−= +−+ . 
 

We can subtract  from both sides to get )(kx

][ )()()1(1)()1( kkkkk UDLD xxxbxx −−−=− +−+ . 

One can think of this as the Gauss-Seidel correction .   As suggested above, it 
turns out that convergence  is often faster if we go beyond the Gauss-Seidel correction.  
The idea of the SOR Method is to iterate   

GS
kk )( )()1( xx −+

xx →)(k

GS
kkkk )( )()1()()1( xxxx −+= ++ ω  

where  
][)( )()()1(1)()1( kkk

GS
kk UDLD xxxbxx −−−=− +−+ , 

and where generally 1 2<<ω .  Notice that if 1=ω , then we simply have the Gauss-Seidel 
Method.  Written out in detail, the SOR Method is 

][ )()()1(1)()1( kkkkk UDLD xxxbxx −−−+= +−+ ω . 

We can multiply both sides by matrix D and divide both sides by ω , and rewrite this as 

][ )()()1()(1)1(1 kkkkk UDLDD xxxbxx −−−+= ++
ωω , 

then collect the  terms on the left hand side to get 1+kx

 )1(1 )( ++ kDL xω = ][ )()()(1 kkk UDD xxbx −−+ω  
⇒  )1(1 )( ++ kDL xω = bx +−− )(1 )( kUDDω  
⇒  )1( +kx = ])[()( )(111 bx +−−+ − kUDDDL ωω  

Notice that the SOR Method is also of the form bxx ~
+= B , so that the convergence analysis just 

done for the Jacobi and Gauss-Seidel Methods can also be done for the SOR Method.  The B 
matrix which determines the convergence of the SOR Method is )() 111 UDDDL −−+ −

ωω( .  
From this point of view, the idea is to choose a value of ω  which minimizes 
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||)()(|| 111 UDDDL −−+ −
ωω .  As we did earlier for the Jacobi and Gauss-Seidel Methods, it is 

possible to find the eigenvalues and eigenvectors for the B matrix when using the SOR Method 
for 2 x 2 systems.  However, because it is significantly more complicated, we do not do the 
derivations here.  It is left as an exercise for the ambitious student (or the challenging instructor). 
 
 

Algorithms 
 

In practice, we are usually using a computer to do the iterations, so we need implementable 
algorithms in order to use the above methods for n x n systems.  We conclude by giving these 
algorithms for finding element , given .  We note that although these 
particular algorithms are not quite optimally efficient, writing the algorithms this way makes 
more obvious the slight (but important) differences between the three methods. 
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Method Algorithm for performing iteration 1+k : 
 For i = 1 to n do: 
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