
Introduction to Iterative Methods for Solving Ax = b

One of the most important problems in mathematics is to find the values of that
satisfy the system of equations

nxxx ,,, 21 K

 .

nnnnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

L

MMOMM

L

L

2211

22222121

11212111

That is, we want to solve for x in bx =A where



















=

nnnn

n

n

aaa

aaa
aaa

A

L

MOMM

L

L

21

22221

11211

, , .



















=

nx

x
x

M
2

1

x


















=

nb

b
b

M
2

1

b

Suppose we had the true values of . Then we could use these values, along with the
first equation (or any other equation where the coefficient is nonzero), to find the true value of

. We usually won’t have the true values of , but suppose we had pretty good
approximations (or guesses) for . Then we could use these values to find a pretty
good approximation for . Similarly, we probably could find a pretty good approximation for
any if we had good approximations for the values of . The idea that is
emerging here is that if we currently have approximations for the values of , then we
can use these current values to find new (and hopefully better!) approximations for .

nxxx ,,, 32 K

x

nxx ,,, 32 K

1

1x nxxx ,,, 32 K

x ,1 K

x
1x

ix nii xxx ,,,, 11 K+−
x ,1 nxx ,,2 K

xx , 21 nx,,K

The fundamental idea of an iterative method is to use , a current approximation (or guess)
for the true solution (where), to find a new approximation , where is closer
to than is. We then use this new approximation as the current approximation to find
yet another, better approximation. In fact, iterate simply means repeat, so an iterative method
repeats this process over and over, each time using the current approximation to produce a better
approximation for the true solution, until the current approximation is sufficiently close to the
true solution (or until you realize that the sequence of approximations resulting from these
iterations is not converging to the true solution). So given , an initial guess or approximation
for the true solution , use to find (we’ll discuss how in a minute) a new approximation

, then use to find yet another, better approximation , and so on. In general, we use
 to find a new approximation . The expectation is that as

currentx

(x

x

x

bx =A

)0(

(kx

newx

x →)(k

newx
x

)1

)k

currentx

)1(x

)0

(x
x

(x
(x

)2

)1+ x ∞→k . Of
course, we hope that after a relatively small number of iterations our current approximation
is close enough to for our needs.

)(kx
x

Note that since we don’t actually have the true solution (if we did, why would we be trying to
find it?), we can’t check to see how close our current approximation is to . One common
way to check the closeness of to is by checking instead how close is to ; that is,

x
)(kx x

)
kx x (kAx xA

 1

how close is to b . Another way to check the accuracy of our current approximation is by
looking at the difference in successive approximations . The idea is that we
generally expect to close to if is small.

)(kAx
)1()(−− kk xx

)(kx x)1()(−− kk xx

)(k)(kx

)()1(kk xx −=+

(xf→ ∞→

bx =

)(, k
nxK)1(

1
+kx

)(, k
nxK








a

M

11

0

0

)1()1 ,, ++ k
nxK

k
nnn

k
nn

k
nn

xa

xa
xa

=

=
=

+)1(

)(
2

)(
1

M



















−

−

n

nn

n

x

x
x

a

a
M

1

 1

1

0

x

k
n

k

k

x

x
x

+

+
+

+

)(
22

)1(
222

)(
212

M










+

+

na

a
M

1

21

)1 0

,)

na

a
a

1

21

11

O

O

L

0 








nx

x
x

M
2

1

x

a

L

O
22

0

(
1x

By the way, this idea of iteration is certainly not unique to linear algebra. An example that is
familiar to all of us is Newton’s Method, which finds approximations to the root x of 0)(=xf .
Given a current approximation to x, Newton’s Method is to use to find using x)1(+kx

)('
)(

)(

)(

k

k

xf
xf .

Under the right conditions, (that is,) as xx k)(0))(→k k . Interestingly, the under-
lying theory of Newton’s Method is actually found in certain iterative methods that solve our
problem . Those methods are discussed in numerical linear algebra courses. A

Jacobi’s Method

Perhaps the simplest approach to designing an iterative method for solving is Jacobi’s
Method. The strategy of this method is to use the first equation and the current values of

 to find a new value , and similarly to find a new value using the i

bx =A

)1(+k
ix

)(
3

)(
2 ,, kk xx th

equation and the old values of the other variables. That is, given current values
, find new values by solving for in)(

2
)(

1 ,, kk xx (
2

)1(
1 ,+ kk x

n
k

k

k

bax

bax
bax

++

++
+++

)(
1

2
)(

1

1
)1(

1

L

MOM

L

L

.

This can also be written as



















=




























n

k

nn

k

nn b

b
b

a

a

a
MM

L

OO

O

L

M 2

1
)(

2

1

12
(

0

0

0

To be clear, we point out that in i is the i(k
i

th element of vector (,
and k is the particular iteration (not the k

),,,,,)()()(
2

) k
n

k
i

kk xxx KK
th power of x).

Where D, L and U are the diagonal, lower triangular and upper triangular parts of A,
respectively,

 2



















=

nna

a
a

D

00
0

0
00

22

11

L

OOM

MO

L

, and U ,



















=

− 0
0

0
000

1 1

21

nnn aa

a
L

L

OOM

MO

L



















=
−

000

00
0

 1

112

L

OOM

MO

L

nn

n

a

aa

then Jacobi’s Method can be written more concisely in matrix-vector notation as

bxx =+++)()1()(kk ULD
so that

])[()(1)1(bxx +−−= −+ kk ULD .

Example 1 Apply Jacobi’s Method to the system

67
962
34

321

321

321

−=++−
=++−
=−−

xxx
xxx
xxx

 .

At each step, given the current values , solve for in)(
3

)(
2

)(
1 ,, kkk xxx)1(

3
)1(

2
)1(

1 ,, +++ kkk xxx

67
962
34

)1(
3

)(
2

)(
1

)(
3

)1(
2

)(
1

)(
3

)(
2

)1(
1

−=++−
=++−
=−−

+

+

+

kkk

kkk

kkk

xxx
xxx
xxx

)0()0()0()0

So if our initial guess is the zero vector),,(321
(xxx=x)0,0,0(=0 —a common initial

guess unless we have some additional information which causes us to choose some other initial
guess—then we find by solving for them in),,()1(

3
)1(

2
)1(

1
)1 xxx=(x

6700
90602
3004

)1(
3

)1(
2

)1(
1

−=++−
=++⋅−
=−−

x
x

x

So . We iterate this process
to find a sequence of increasingly better approximations . We are
interested in the error between the true solution and the approximation at each iteration:

. Obviously, we wouldn’t normally have the true solution .
However, in order to better understand the behavior of an iterative method, it is very
enlightening to use the method in solving a system

)857.0 ,500.1 ,750.0 ()7/6 ,6/9 ,4/3(),,()1(
3

)1(
2

)1(
1

)1(−=−== xxxx
, ,)1()0(xx

x
)()()(kkk xxe −==

bx

 , ,)3()2(Kxx
)(kx

error x

=A

)1 ,2 ,1 (

 where we do know the true solution,
and analyze how quickly the approximations it produces are converging to the true solution. For
this example, the true solution is −=x

), ,,(21 nxxx K

. In case you haven’t yet learned about the norm
of a vector, we briefly describe it (actually, there are multiple norms, so we will describe the
most common and useful norm). If =x , then the norm of vector x is

22
2

2
1 || nxxx +++= L ||x|| x . The norm || is simply a way to measure the length or size of a

vector. Notice, for example, in the following table, that the norm of the error | is |||)(ke

 3

becoming progressively smaller. This means that the approximations are becoming
progressively better.

k)(kx)1()(−− kk xx)()(kk xxe −= ||||)(ke
||||

||||
)1(

)(

−k

k

e
e

0 0.000 0.000 0.000 — — — 1.000 2.000 -1.000 2.449 —
1 0.750 1.500 -0.857 0.750 1.500 -0.857 0.250 0.500 -0.143 0.557 0.236
2 0.911 1.893 -0.964 0.161 0.393 -0.107 0.089 0.107 -0.036 0.144 0.250
3 0.982 1.964 -0.997 0.071 0.071 -0.033 0.018 0.036 -0.003 0.040 0.278
4 0.992 1.994 -0.997 0.010 0.029 0.000 0.008 0.006 -0.003 0.011 0.269
5 0.999 1.997 -1.000 0.007 0.003 -0.003 0.001 0.003 0.000 0.003 0.310
6 0.999 2.000 -1.000 0.000 0.003 0.001 0.001 0.000 0.000 0.001 0.288
7 1.000 2.000 -1.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.366
8 1.000 2.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.339

For this example, we stop iterating after all three ways of measuring the current error

, , and || are = 0 to three decimal places. In practice, you would normally
choose just one of the three measurements of error in determining when to stop.

)1()(−− kk xx)(ke ||)(ke

Gauss-Seidel Method

Let us now take Jacobi’s Method one step further. Where the true solution is ,
if is a better approximation to the true value of than is, then it would make sense
that once we have found the new value to use it (rather than the old value) in finding

. So is found just as before, but in finding , instead of using the old
value of and the old values , we now use the new value and the old
values in order to find , and similarly for finding . This
technique is called the Gauss-Seidel Method (even though, as noted by Gilbert Strang in his text,
“Introduction to Applied Mathematics,” Gauss didn’t know about it and Seidel didn’t
recommend it), and is described by:

),,,(21 nxxx K=x

)(
1
kx

)1(
1

+kx
)1()1 ,, ++ k

nxK

)1(
1

+kx

)1(
2 ,+k K

x

1x
)(

1
kx

(
2x

)1(
1

+kx

(,, k
nxK

)1(
2
+kx

)1(, +k
nxx

)(
1
kx

)(
3 ,,k K

)1(
1

+kx)1+k

))(
3
kx

)(k
nx

(
3
kx

n
k
nnn

k
n

k
n

k
nn

kk

k
nn

kk

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

+++

++

+

)1()1(
22

)1(
11

2
)(

2
)1(

222
)1(

121

1
)(

1
)(

212
)1(

111

L

MMOMM

L

L

.

 4

This can also be written,



















=





































+





































−

+

− n

k

n

nn

n
k

nnnnnn b

b
b

x

x
x

a

aa

x

x
x

aaa

aa
a

MM

L

OOM

MO

L

M

L

OOM

MO

L

2

1
)(

2

1

 1

112
)1(

2

1

1 1

2221

11

000

00
0

0

00

.

That is,
bxx =++ +)()1()(kk UDL

so that
][)()(1)1(bxx +−+= −+ kk UDL

Example 2 Apply the Gauss-Seidel Method to the system from Example 1:

67
962
34

321

321

321

−=++−
=++−
=−−

xxx
xxx
xxx

 .

At each step, given the current values , solve for in)(
3

)(
2

)(
1 ,, kkk xxx)1(

3
)1(

2
)1(

1 ,, +++ kkk xxx

 .
67
962
34

)1(
3

)1(
2

)1(
1

)(
3

)1(
2

)1(
1

)(
3

)(
2

)1(
1

−=++−
=++−
=−−

+++

++

+

kkk

kkk

kkk

xxx
xxx
xxx

In order to compare our results using the Gauss-Seidel Method to our results when using the
Jacobi Method, we again choose . We then find by solving for
them in

0x =)0(),,()1(
3

)1(
2

)1(
1

)1(xxx=x

 .
67
9062
3004

)1(
3

)1(
2

)1(
1

)1(
2

)1(
1

)1(
1

−=++−
=++−
=−−

xxx
xx

x

Let us be clear about how we solve this. We first solve for in the first equation, and find that
. We then solve for in the second equation, using the new value of

, and find that . Finally, we solve for using the
third equation, using the new values of and , and find that

. The result then of this first iteration of the Gauss-Seidel
Method is . We iterate this process to find a sequence of
increasingly better approximations and find the same sort of table as in
Example 1:

)1(
1x

750.04/3)1(
1 ==x

750.0)1(
1 =x

750.06[)1(
3 −+−=x

)1(=x

)1(
2x
750.0

)
 ,)1(x

750.16/)])(2(9[)1(
2 =+=x

750.0)1(
1 =x

000.17 −=
 000.1 ,750.1 −

 , , ,)3()2()0(Kxxx

)1(
3x

750.1)1(
2 =x

/]750.1
 ,750.0 (

 5

k)(kx)1()(−− kk xx)()(kk xxe −= ||||)(ke
||||

||||
)1(

)(

−k

k

e
e

0 0.000 0.000 0.000 — — — 1.000 2.000 -1.000 2.449 —
1 0.750 1.750 -1.000 0.750 1.750 -1.000 0.250 0.250 0.000 0.354 0.144
2 0.938 1.979 -1.006 0.188 0.229 -0.006 0.063 0.021 0.006 0.066 0.187
3 0.993 1.999 -1.001 0.056 0.020 0.005 0.007 0.001 0.001 0.007 0.104
4 0.999 2.000 -1.000 0.006 0.001 0.001 0.001 0.000 0.000 0.001 0.075
5 1.000 2.000 -1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.052

As we did for the previous example, we again stop iterating after all three ways of measuring the
current error , , and || are = 0 to three decimal places. Notice that this
sequence of iterations converges to the true solution (

)1()(−− kk xx)(ke ||)(ke
) 1 ,2,1 − much more quickly than we found

in Example 1 using the Jacobi Method. This is generally expected, since with the Gauss-Seidel
Method we use new values as we find them, rather than waiting until the subsequent iteration to
use any new values, as is done with the Jacobi Method.

 6

	Jacobi’s Method
	Perhaps the simplest approach to designing an ite
	
	Example 1 Apply Jacobi’s Method to the system
	Gauss-Seidel Method
	Example 2 Apply the Gauss-Seidel Method to the system from Example 1:

