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Math 260 Section 7.1 
 
Most important ideas: 

• There’s not a lot new today, just remembering several ideas from chapter 6 and putting 
them all together. 

• Properties of a symmetric matrix, including its orthogonal diagonalization. 

• Note: the spectrum refers to the entire range of frequencies (e.g. of color, sound, etc.) 
 
First, another way (a little strange, but sometimes useful) to view matrix multiplication—              
see Theorem 10 on page 119. 

Example:   

[
𝟏 𝟐
𝟑 𝟒

] [
𝟓 𝟔
𝟕 𝟖

] = [
𝟏
𝟑
] [𝟓 𝟔] + [

𝟐
𝟒
] [𝟕 𝟖] = [

𝟓 𝟔
𝟏𝟓 𝟏𝟖

] + [
𝟏𝟒 𝟏𝟔
𝟐𝟖 𝟑𝟐

] = [
𝟏𝟗 𝟐𝟐
𝟒𝟑 𝟓𝟎

]. 

 
Second, recall that if an 𝑛 × 𝑛 matrix 𝑃 = [ 𝑢⃗ 1 𝑢⃗ 2 ⋯𝑢⃗ 𝑛 ] is orthogonal, that is, its columns are 
orthonormal, that is, 

𝑢⃗ 𝑖 ⋅ 𝑢⃗ 𝑗 = 𝑢⃗ 𝑖
𝑇𝑢⃗ 𝑗 = {

0 if 𝑖 ≠ 𝑗
1 if 𝑖 = 𝑗

 

then: 

𝑃𝑇𝑃 =

[
 
 
 
𝑢⃗ 1

𝑇

𝑢⃗ 2
𝑇

⋮
𝑢⃗ 𝑛

𝑇]
 
 
 
[𝑢⃗ 1 𝑢⃗ 2 ⋯ 𝑢⃗ 𝑛] =

[
 
 
 
𝑢⃗ 1

𝑇𝑢⃗ 1 𝑢⃗ 1
𝑇𝑢⃗ 2 ⋯ 𝑢⃗ 1

𝑇𝑢⃗ 𝑛
𝑢⃗ 2

𝑇𝑢⃗ 1 𝑢⃗ 2
𝑇𝑢⃗ 2 ⋯ 𝑢⃗ 2

𝑇𝑢⃗ 𝑛
⋮ ⋮ ⋱ ⋮

𝑢⃗ 𝑛
𝑇𝑢⃗ 1 𝑢⃗ 𝑛

𝑇𝑢⃗ 2 ⋯ 𝑢⃗ 𝑛
𝑇𝑢⃗ 𝑛]

 
 
 
= [

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

] 

 
and remember that this also means that  the inverse of  𝑷  is simply  𝑷𝑻, which is very useful. 
 
Third, recall the Gram-Schmidt Process (for two vectors):  given  𝑥 1  and  𝑥 2,  let 
 

𝑣 1 = 𝑥 1  

     𝒗⃗⃗ 𝟏 = 𝒙⃗⃗ 𝟏 
 

     𝒗⃗⃗ 𝟐 = 𝒙⃗⃗ 𝟐 −
𝒙⃗⃗ 𝟐 ⋅ 𝒗⃗⃗ 𝟏
𝒗⃗⃗ 𝟏 ⋅ 𝒗⃗⃗ 𝟏

𝒗⃗⃗ 𝟏 

 
 
 
          
Then  𝒔𝒑𝒂𝒏{𝒗⃗⃗ 𝟏, 𝒗⃗⃗ 𝟐} = 𝒔𝒑𝒂𝒏{𝒙⃗⃗ 𝟏, 𝒙⃗⃗ 𝟐}  but with  𝒗⃗⃗ 𝟏 ⊥ 𝒗⃗⃗ 𝟐: 

     𝒗⃗⃗ 𝟏 ⋅ 𝒗⃗⃗ 𝟐 = 𝒗⃗⃗ 𝟏 ⋅ (𝒙⃗⃗ 𝟐 −
𝒙⃗⃗ 𝟐⋅𝒗⃗⃗ 𝟏

𝒗⃗⃗ 𝟏⋅𝒗⃗⃗ 𝟏
𝒗⃗⃗ 𝟏) 

                  = 𝒗⃗⃗ 𝟏 ⋅ 𝒙⃗⃗ 𝟐 −
𝒙⃗⃗ 𝟐⋅𝒗⃗⃗ 𝟏

𝒗⃗⃗ 𝟏⋅𝒗⃗⃗ 𝟏
𝒗⃗⃗ 𝟏 ⋅ 𝒗⃗⃗ 𝟏 

                  = 𝟎 

𝒗⃗⃗ 𝟏 = 𝒙⃗⃗ 𝟏 
 

𝒙⃗⃗ 𝟐⋅𝒗⃗⃗ 𝟏

𝒗⃗⃗ 𝟏⋅𝒗⃗⃗ 𝟏
𝒗⃗⃗ 𝟏  

𝒗⃗⃗ 𝟐 = 𝒙⃗⃗ 𝟐 −
𝒙⃗⃗ 𝟐⋅𝒗⃗⃗ 𝟏

𝒗⃗⃗ 𝟏⋅𝒗⃗⃗ 𝟏
𝒗⃗⃗ 𝟏  

𝒙⃗⃗ 𝟐 



2 
 

 
Fourth, recall that if for  𝑛 × 𝑛  𝐴  we have  𝐴𝑣 1 = 𝜆1𝑣 1,  𝐴𝑣 2 = 𝜆2𝑣 2,  … , 𝐴𝑣 𝑛 = 𝜆𝑛𝑣 𝑛, then 

𝐴 [ 𝑣 1 𝑣 2  ⋯ 𝑣 𝑛] = [ 𝐴𝑣 1 𝐴𝑣 2  ⋯ 𝐴𝑣 𝑛] = [ 𝜆1𝑣 1 𝜆2𝑣 2  ⋯ 𝜆𝑛𝑣 𝑛] = [ 𝑣 1 𝑣 2  ⋯ 𝑣 𝑛]

[
 
 
 
𝜆1

𝜆2

⋱
𝜆𝑛]

 
 
 
 . 

That is, where  𝑃 = [ 𝑣 1 𝑣 2  ⋯ 𝑣 𝑛]  and  𝐷 =

[
 
 
 
𝜆1

𝜆2

⋱
𝜆𝑛]

 
 
 
,  we have  𝐴𝑃 = 𝑃𝐷. 

and if the columns of  𝑃 are linearly independent, then  𝑷−𝟏  exists and  𝑨 = 𝑷𝑫𝑷−𝟏, that is, 𝐴 
is diagonalizable. 

Fifth:  if two eigenvectors share the same eigenvalue  𝐴𝑣 1 = 𝜆𝑣 1,  𝐴𝑣 2 = 𝜆𝑣 2  then   

𝐴(𝑐1𝑣 1 + 𝑐2𝑣 2) = 𝐴(𝑐2𝑣 1) + 𝐴(𝑐2𝑣 2) = 𝑐1𝐴𝑣 1 + 𝑐2𝐴𝑣 2 = 𝑐1𝜆𝑣 1 + 𝑐2𝜆𝑣 2 = 𝜆(𝑐1𝑣 1 + 𝑐2𝑣 2) 

so any linear combination of those two eigenvectors is also an eigenvector.  (Of course the 
same sort of thing is true if there are more than two eigenvectors with the same eigenvalue.)  

 
Let’s put it all together in the following example. 
 

Consider  𝐴 = [

4 1 3 1
1 4 1 3
3 1 4 1
1 3 1 4

],  which is symmetric (i.e. 𝐴𝑇 = 𝐴), and has eigenvalues and eigenvectors 

     𝜆1 = 9             𝜆2 = 5                       𝜆3 = 𝜆4 = 1 

    𝑣 1 = [

1
1
1
1

]       𝑣 2 = [

1
−1

1
−1

]           𝑣 3 = [

1
1

−1
−1

]   𝑣 4 = [

3
2

−3
−2

] 

So 𝐴 = 𝑃𝐷𝑃−1 where 

𝑃 = [

1 1 1 3
1 −1 1 2
1 1 −1 −3
1 −1 −1 −2

]  and  𝐷 = [

9
5

1
1

]. 

 
You can check that  𝐴 = 𝑃𝐷𝑃−1.  Notice that all of the eigenvectors are all mutually orthogonal, 
except for  𝑣 3  and  𝑣 4,  which correspond to the same eigenvalue of  1.  See Theorem 1 on page 
395 and Theorem 2 on page 396. 
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Recall that if you have two or more vectors corresponding to the same eigenvalue, then any 
linear combination of those eigenvectors is also an eigenvector corresponding to the same 
eigenvalue.  Could we come up with two other eigenvectors corresponding to eigenvalue 
𝝀𝟑 = 𝝀𝟒 = 𝟏 that are orthogonal to each other (“mutually orthogonal”)?  Yes, using the 
Gram-Schmidt Process.  Flex.   
 
In the above example: 
 
First, keep eigenvector  𝑣 3. 
 
Second, create a new eigenvector  𝑣 4  still corresponding to  𝜆 = 1  but that is orthogonal to  𝑣 3: 
 

New  𝒗⃗⃗ 𝟒 = 𝒗⃗⃗ 𝟒 −
𝒗⃗⃗ 𝟒⋅𝒗⃗⃗ 𝟑

𝒗⃗⃗ 𝟑⋅𝒗⃗⃗ 𝟑
𝒗⃗⃗ 𝟑 = [

𝟑
𝟐

−𝟑
−𝟐

] −
𝟏𝟎

𝟒
[

𝟏
𝟏

−𝟏
−𝟏

] = [

𝟏/𝟐
−𝟏/𝟐
−𝟏/𝟐

𝟏/𝟐

].   

We can actually use any multiple of an eigenvector, so let’s multiply what we just found by 2 to 

avoid fractions.  You can check that  𝐴𝑣 4 = 1𝑣 4  for  𝑣 4 = [

1
−1
−1

1

]  and that this  𝑣 4  is orthogonal 

to 𝑣 1, 𝑣 2  and  𝑣 3.   

So our new  𝑃  is   [

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

]   with the same  𝐷 = [

9
5

1
1

]  as before. 

 (Again you can check that 𝐴 = 𝑃𝐷𝑃−1.) 
 
We could take this one step further and normalize (make size 1) each column of 𝑃 by simply 
dividing each column by its current size to get 
 

𝑃 = [

1/2 1/2 1/2 1/2
1/2 −1/2 1/2 −1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 1/2

]   

So  𝐴 = 𝑃𝐷𝑃−1 = 𝑃𝐷𝑃𝑇   since  𝑃  is an orthogonal matrix.  So  𝑨  is orthogonally diagonalizable. 
(That would be a good name for a band, or at least a song.)   Again see Theorem 2 on page 396. 
 
Theorem 3 on page 397 summarizes a lot of this.  Notice property (b) which guarantees that we 
will have a full set of eigenvectors. 
 
So we see that symmetric matrices are really handy.  Luckily many matrices that arise in real life 
problems are symmetric. 
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Last thought.  Recall:  if 𝐴 is orthogonally diagonalizable, then  
 
     𝐴 = 𝑃𝐷𝑃𝑇 

         = [𝑢⃗ 1   ⋯   𝑢⃗ 𝑛] [
𝜆1

⋱
𝜆𝑛

] [
𝑢⃗ 1

𝑇

⋮
𝑢⃗ 𝑛

𝑇
] 

         = [𝜆1𝑢⃗ 1   ⋯   𝜆𝑛𝑢⃗ 𝑛] [
𝑢⃗ 1

𝑇

⋮
𝑢⃗ 𝑛

𝑇
] 

         = 𝜆1𝑢⃗ 1𝑢⃗ 1
𝑇 + ⋯+ 𝜆𝑛𝑢⃗ 𝑛𝑢⃗ 𝑛

𝑇 . 

 

Reminder:  if  𝑢⃗ 𝑖  is 𝑛 × 1, then each  𝑢⃗ 𝑖𝑢⃗ 𝑖
𝑇 is an 𝑛 × 𝑛 matrix. 

This is called the spectral decomposition of  𝑨.  It sort of decomposes the matrix  𝐴  into its 
various “frequencies,” similar to how a Fourier Series (in Section 6.8) decomposes a function or 
signal into its various frequencies. 

Example from above:  𝐴 = 𝜆1𝑢⃗ 1𝑢⃗ 1
𝑇 + 𝜆2𝑢⃗ 2𝑢⃗ 2

𝑇 + 𝜆3𝑢⃗ 3𝑢⃗ 3
𝑇 + 𝜆4𝑢⃗ 4𝑢⃗ 4

𝑇  where 

𝜆1𝑢⃗ 1𝑢⃗ 1
𝑇 = 9 [

1/2
1/2
1/2
1/2

] [1/2 1/2 1/2 1/2 ] =
9

4
[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

] 

𝜆2𝑢⃗ 2𝑢⃗ 2
𝑇 = 5 [

1/2
−1/2

1/2
−1/2

] [1/2 −1/2 1/2 −1/2 ] =
5

4
[

1 −1 1 −1
−1 1 −1 1

1 −1 1 −1
−1 1 −1 1

] 

𝜆3𝑢⃗ 3𝑢⃗ 3
𝑇 = 1 [

1/2
1/2

−1/2
−1/2

] [1/2 1/2 −1/2 −1/2 ] =
1

4
[

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

] 

𝜆4𝑢⃗ 4𝑢⃗ 4
𝑇 = 1 [

1/2
−1/2
−1/2

1/2

] [1/2 −1/2 −1/2 1/2 ] =
1

4
[

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1

1 −1 −1 1

] 

Notice the “frequencies” of each of the above four matrices.  Each eigenvalue 𝜆𝑖 tells us how 

much of  𝑢⃗ 𝑖𝑢⃗ 𝑖
𝑇  there is in  𝐴  just like the Fourier coefficients 𝑎𝑘 and 𝑏𝑘 tell us how much of 

cos 𝑘𝑡  and  sin 𝑘𝑡  there is in a particular function. 


