
1 
 

Math 260 Section 6.7 
 
Most important ideas: 

• Inner products and inner product spaces 
• The norm of a function; orthogonality of functions 

 
Recall that dot products can be used to: 

1. Find the size of a vector:  ‖𝒖𝒖��⃗ ‖ = √𝒖𝒖��⃗ ⋅ 𝒖𝒖��⃗ = √𝒖𝒖��⃗ 𝑻𝑻𝒖𝒖��⃗ . 
2. They allow us to define/recognize when two vectors are orthogonal:  𝒖𝒖��⃗ ⋅ 𝒗𝒗��⃗ = 𝟎𝟎 

 
Orthogonality is useful because: 

1. If  �𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑝𝑝�  is an orthogonal basis for 𝑊𝑊, then for any �⃗�𝑦 ∈ 𝑊𝑊, then we have a nice 
formula for how to build  �⃗�𝑦  out of  𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … , 𝑢𝑢�⃗ 𝑝𝑝: 
 

𝒚𝒚��⃗ =
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟏𝟏
𝒖𝒖��⃗ 𝟏𝟏 ⋅ 𝒖𝒖��⃗ 𝟏𝟏

 𝒖𝒖��⃗ 𝟏𝟏 +
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟐𝟐
𝒖𝒖��⃗ 𝟐𝟐 ⋅ 𝒖𝒖��⃗ 𝟐𝟐

𝒖𝒖��⃗ 𝟐𝟐 + ⋯+
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝒑𝒑
𝒖𝒖��⃗ 𝒑𝒑 ⋅ 𝒖𝒖��⃗ 𝒑𝒑

𝒖𝒖��⃗ 𝒑𝒑   
 

Recall that this formula is only true if the vectors  𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑝𝑝  are orthogonal.                     
 

2. Orthogonality also leads to the Gram-Schmidt Process. 
 
Sometimes it is very useful to build one function out of a collection of other functions.                       
For example, 

𝑥𝑥 = 2 �sin 𝑥𝑥 −
sin 2𝑥𝑥

2
+

sin 3𝑥𝑥
3

−
sin 4𝑥𝑥

4
+ ⋯� 

 
Try plotting  2(sin 𝑥𝑥 − sin2𝑥𝑥

2
+ sin3𝑥𝑥

3
− sin4𝑥𝑥

4
)  to see how it approximates or sort of “fits” the 

function  𝑥𝑥.  Without getting into too much detail right now about building of  𝑥𝑥  out of 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
functions, for now I’ll just say that we need the idea of orthogonality for functions to figure out 
how to build  𝑥𝑥  out of sines. 
 
Recall that dot products allow us to determine whether two vectors are orthogonal:  their dot 
product = 0  means they are orthogonal.  Again, we need a way to determine whether two 
functions are orthogonal  (don’t worry about what this looks like—it doesn’t look like anything!) 
 
An inner product is a more general idea of a dot product.  Recall the theorem about dot 
products on page 331, as well as the idea of size/length/norm on page 331 and orthogonality 
on page 334.  Compare these to the definition of an inner product on page 376 and 
size/length/norm and orthogonality on page 377.  (Why is the one set of rules a theorem and 
the other set of rules a definition?)  Spend a few minutes looking at these things in the book. 
 
The dot product  𝑢𝑢�⃗ ⋅ �⃗�𝑣 = 𝑢𝑢�⃗ 𝑇𝑇�⃗�𝑣  is just one version of an inner product, a version used for vectors.   
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Recall that for dot product of vectors: ‖𝑢𝑢�⃗ ‖ = √𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗  

Similarly, for inner products:   ‖𝒖𝒖��⃗ ‖ = �〈𝒖𝒖��⃗ ,𝒖𝒖��⃗ 〉 
 
Example 1:  Given functions 𝑓𝑓(𝑡𝑡) and 𝑔𝑔(𝑡𝑡), define  

〈𝑓𝑓,𝑔𝑔〉 = �𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) 𝑑𝑑𝑡𝑡
1

−1

 

 
There are all sorts of ways to define the inner product between two functions (or two vectors 
or two matrices or two digital images or two of anything from a vector space).  The inner 
product defined simply has to satisfy the properties listed on page 376.  (Does the inner    
product just defined satisfy the properties on page 376?  We could show that it does.)    

Suppose 𝑓𝑓(𝑡𝑡) = 𝑡𝑡, 𝑔𝑔(𝑡𝑡) = 𝑡𝑡2.  Then 
 

‖𝑓𝑓‖  =  �〈𝑓𝑓, 𝑓𝑓〉 = � �𝑡𝑡 ⋅ 𝑡𝑡 𝑑𝑑𝑡𝑡
1

−1

= � �𝑡𝑡2 𝑑𝑑𝑡𝑡
1

−1

= �2/3       

‖𝑔𝑔‖ = �〈𝑔𝑔,𝑔𝑔〉 = � �𝑡𝑡2 ⋅ 𝑡𝑡2 𝑑𝑑𝑡𝑡
1

−1

= � �𝑡𝑡4 𝑑𝑑𝑡𝑡
1

−1

= �2/5 

 〈𝑓𝑓,𝑔𝑔〉 = �𝑡𝑡 ⋅ 𝑡𝑡2 𝑑𝑑𝑡𝑡
1

−1

= �𝑡𝑡3 𝑑𝑑𝑡𝑡
1

−1

= 0 

 

Important:  〈𝒇𝒇,𝒈𝒈〉 = 𝟎𝟎 means that functions 𝒇𝒇(𝒕𝒕) = 𝒕𝒕 and 𝒈𝒈(𝒕𝒕) = 𝒕𝒕𝟐𝟐 are orthogonal, under 
the inner product just defined above. 
 
There is no way to visualize the idea of two functions being orthogonal.  This doesn’t matter at 
all, as what we what we want to do with functions being orthogonal, like to project one 
function onto an orthogonal set of functions (what does it mean to project a vector onto a set 
of vectors?) doesn’t require us to visualize anything. 
 
Side note:  recall the inequalities that we saw in 6.1 for dot products: 

|𝑢𝑢�⃗ ⋅ �⃗�𝑣| ≤ ‖𝑢𝑢�⃗ ‖‖�⃗�𝑣‖, that is, the size of the product is ≤ the product of the sizes 

‖𝑢𝑢�⃗ + �⃗�𝑣‖ ≤ ‖𝑢𝑢�⃗ ‖ + ‖�⃗�𝑣‖, that is, the size of the sum is ≤ the sum of the sizes 

These are true with inner products: 

|〈𝑢𝑢�⃗ , �⃗�𝑣〉| ≤ ‖𝑢𝑢�⃗ ‖‖�⃗�𝑣‖,  that is, the size of the product is  ≤  the product of the sizes 

‖𝑢𝑢�⃗ + �⃗�𝑣‖ ≤ ‖𝑢𝑢�⃗ ‖ + ‖�⃗�𝑣‖,  that is, the size of the sum is  ≤  the sum of the sizes 
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Side note:  The Wronskian of 2 or more functions is a way to determining whether or not those 
functions are linearly independent.  This is something you will use more in Math 340, 
Differential Equations. 
 
Example 2: 𝑓𝑓(𝑡𝑡) = 4 + 𝑡𝑡, 𝑓𝑓′(𝑡𝑡) = 1 
  𝑔𝑔(𝑡𝑡) = 5 − 4𝑡𝑡2, 𝑔𝑔′(𝑡𝑡) = −8𝑡𝑡 
 

So the Wronskian of 𝑓𝑓 and 𝑔𝑔 is  �
𝑓𝑓 𝑔𝑔
𝑓𝑓′ 𝑔𝑔′� = �4 + 𝑡𝑡 5 − 4𝑡𝑡2

1 −8𝑡𝑡
� = −4𝑡𝑡2 − 32𝑡𝑡 − 5 ≠ 0,               

which means that functions  𝑓𝑓  and  𝑔𝑔  are linearly independent. 
 
Example 3: 
 

�
4 + 𝑡𝑡 5 − 4𝑡𝑡2 8𝑡𝑡2 + 3𝑡𝑡 + 2

1 −8𝑡𝑡 16𝑡𝑡 + 3
0 −8 16

� = (4 + 𝑡𝑡) �−8𝑡𝑡 16𝑡𝑡 + 3
−8 15 � − 1 �5 − 4𝑡𝑡2 8𝑡𝑡2 + 3𝑡𝑡 + 2

−8 16
� + 0 �5 − 4𝑡𝑡2 8𝑡𝑡2 + 3𝑡𝑡 + 2

−8𝑡𝑡 16𝑡𝑡 + 3
� = 0  

So the collection of functions  4 + 𝑡𝑡, 5 − 4𝑡𝑡2, 8𝑡𝑡2 + 3𝑡𝑡 + 2  is linearly dependent.   
(Notice that  8𝑡𝑡2 + 3𝑡𝑡 + 2 = 3(4 + 𝑡𝑡) − 2(5 − 4𝑡𝑡2).)   
 
We can project one function onto another.  Let’s work Class Example 4 in class. 

We can use the Gram-Schmidt Process on a collection of linearly independent functions to 
create an orthogonal set of functions which span (generate) the same set of functions.                  
Let’s work Class Example 5 in class. 

 

Example 6:  Consider the set of functions 

   { 1, cos 𝑡𝑡 , cos 2𝑡𝑡 , … , cos𝑘𝑘𝑡𝑡 , …  , sin 𝑡𝑡 , sin 2𝑡𝑡 , … , sin𝑘𝑘𝑡𝑡 , … }   

where 𝑘𝑘 is a positive integer, along with the inner product 

〈𝑓𝑓,𝑔𝑔〉 = �𝑓𝑓(𝑡𝑡)𝑔𝑔(𝑡𝑡) 𝑑𝑑𝑡𝑡 .
𝜋𝜋

−𝜋𝜋

 

It turns out that the above set of cosine and sine functions is orthogonal under this inner 
product.  We want to build other (non-trig) functions with these trigonometric functions.   
 
Note that cos 0𝑡𝑡 = cos 0 = 1 and sin 0𝑡𝑡 = sin 0 = 0, but we won’t include 0 in the above set 
of cosines and sines, as including 0 wouldn’t allow us to build anything else, and the set would 
not be linearly independent (any set of vectors with the zero vector is linearly independent). 
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In 6.8 we will build functions (as linear combinations, naturally) using the above cosines and 
sines.  For now, let’s simply show that these functions are orthogonal: 

First,      〈1, cos 𝑘𝑘𝑡𝑡〉 = � 1 ⋅ cos 𝑘𝑘𝑡𝑡  𝑑𝑑𝑡𝑡
𝜋𝜋

−𝜋𝜋

=
sin𝑘𝑘𝑡𝑡
𝑘𝑘

�
−𝜋𝜋

   𝜋𝜋

=
1
𝑘𝑘

(sin𝑘𝑘𝑘𝑘 − sin(−𝑘𝑘𝑘𝑘)) = 0. 

since  sin𝑘𝑘𝑘𝑘 = sin(−𝑘𝑘𝑘𝑘) = 0 for any integer 𝑘𝑘, and 

〈1, sin𝑘𝑘𝑡𝑡〉 = � 1 ⋅ sin𝑘𝑘𝑡𝑡  𝑑𝑑𝑡𝑡
𝜋𝜋

−𝜋𝜋

= −
cos 𝑘𝑘𝑡𝑡
𝑘𝑘

�
−𝜋𝜋

   𝜋𝜋

= −
1
𝑘𝑘

(cos𝑘𝑘𝑘𝑘 − cos(−𝑘𝑘𝑘𝑘)) = 0. 

since cos 𝜃𝜃 = cos(−𝜃𝜃) for any 𝜃𝜃. 
 
Next, for  𝑚𝑚 ≠ 𝑠𝑠  (using Wolfram Alpha), 

〈cos𝑚𝑚𝑡𝑡 , cos𝑠𝑠𝑡𝑡〉 = � cos𝑚𝑚𝑡𝑡 ⋅ cos𝑠𝑠𝑡𝑡  𝑑𝑑𝑡𝑡
𝜋𝜋

−𝜋𝜋

=
𝑚𝑚 sin𝑚𝑚𝑡𝑡 cos𝑠𝑠𝑡𝑡 − 𝑠𝑠 cos𝑚𝑚𝑡𝑡 sin𝑠𝑠𝑡𝑡

𝑚𝑚2 − 𝑠𝑠2
�
−𝜋𝜋

   𝜋𝜋

= 0 

since  sin𝑚𝑚𝑘𝑘 = 0  and  sin𝑠𝑠𝑘𝑘 = 0  where  𝑚𝑚  and  𝑠𝑠  are integers.  We could do the same          
with the sine vs. sine functions and the cosine vs. sine functions, to then conclude that each 
function in 

   { 1, cos 𝑡𝑡 , cos 2𝑡𝑡 , … , cos𝑘𝑘𝑡𝑡 , …  , sin 𝑡𝑡 , sin 2𝑡𝑡 , … , sin𝑘𝑘𝑡𝑡 , … }   

is orthogonal to every other function. 
 
Finally, also useful in Section 6.8 is the fact that  

〈𝟏𝟏,𝟏𝟏〉 = �𝟏𝟏 ⋅ 𝟏𝟏 𝒅𝒅𝒕𝒕
𝝅𝝅

−𝝅𝝅

= 𝟐𝟐𝝅𝝅. 

and using the fact that  cos 2𝑡𝑡 = 2 cos2 𝑡𝑡 − 1 ⇒  cos2 𝑡𝑡 = 1+cos2𝑡𝑡
2

 

〈𝐜𝐜𝐜𝐜𝐜𝐜 𝒌𝒌𝒕𝒕 , 𝐜𝐜𝐜𝐜𝐜𝐜 𝒌𝒌𝒕𝒕〉 = �𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐 𝒌𝒌𝒕𝒕  𝒅𝒅𝒕𝒕
𝝅𝝅

−𝝅𝝅

= �
𝟏𝟏 + 𝐜𝐜𝐜𝐜𝐜𝐜 𝟐𝟐𝒕𝒕

𝟐𝟐
 𝒅𝒅𝒕𝒕

𝝅𝝅

−𝝅𝝅

= 𝝅𝝅 

and using the fact that  cos 2𝑡𝑡 = 1 − 2 sin2 𝑡𝑡  ⇒  sin2 𝑡𝑡 = 1−cos2𝑡𝑡
2

 

〈𝐜𝐜𝐬𝐬𝐬𝐬𝒌𝒌𝒕𝒕 , 𝐜𝐜𝐬𝐬𝐬𝐬 𝒌𝒌𝒕𝒕〉 = � 𝐜𝐜𝐬𝐬𝐬𝐬𝟐𝟐 𝒌𝒌𝒕𝒕  𝒅𝒅𝒕𝒕
𝝅𝝅

−𝝅𝝅

= �
𝟏𝟏 − 𝐜𝐜𝐜𝐜𝐜𝐜𝟐𝟐𝒕𝒕

𝟐𝟐
 𝒅𝒅𝒕𝒕

𝝅𝝅

−𝝅𝝅

= 𝝅𝝅. 

Or you could be clever and use the fact that  sin2 𝑘𝑘𝑡𝑡 = 1 − cos2 𝑘𝑘𝑡𝑡  so that 

〈𝐜𝐜𝐬𝐬𝐬𝐬 𝒌𝒌𝒕𝒕 , 𝐜𝐜𝐬𝐬𝐬𝐬𝒌𝒌𝒕𝒕〉 = � 𝐜𝐜𝐬𝐬𝐬𝐬𝟐𝟐 𝒌𝒌𝒕𝒕  𝒅𝒅𝒕𝒕
𝝅𝝅

−𝝅𝝅

= �𝟏𝟏 − 𝒄𝒄𝒄𝒄𝒔𝒔𝟐𝟐𝒌𝒌𝒕𝒕 𝒅𝒅𝒕𝒕
𝝅𝝅

−𝝅𝝅

= 𝟐𝟐𝝅𝝅 − 𝝅𝝅 = 𝝅𝝅. 

 


