Math 260 Section 6.4

Most important ideas:
e Gram-Schmidt Process: given a (non-orthogonal, but linearly independent) set of
vectors, create a new, orthogonal set of vectors which span the same vector space.
e This process also leads to a useful factorization of a matrix, the QR factorization.

e Recall for a matrix times a matrix: A [51 Bz Bn] = [ABI ABZ ---AEn ], and

X1
recall for a matrix times avector: [d; d, - a, || ."| = x1d; + x,a, + -+ + x,,d,, .
xn

First, an idea that will be useful to us a little later in this section: Suppose that we have a set of
linearly independent vectors {¥;,X,, X3}, and that we have three other vectors {v,V,, U3},
each of which is a linear combination of {X;,X,,¥3}. Then any vector that we can build using
{xX1,%,,X3} we can also build using {V;,V,,V3}; thatis, span{v,,V,, U3} = span{¥x;,%,, xX3}.

Example 1 (keep in mind X;,X,, X3 and ¥y, ¥,, U3 are all vectors):

Suppose: That is:
'!_7)2 = 9?_6')1 + 7?_6')2 [7_7)1 62 7_7)3 ] = [_.X—f)l 72 73 ] |: 10 7 —2]
1_53 = 4‘3?1 - 23?2 + .72)3 4 0 1
V = X A

That is, V = XA, so matrix A tells us how to build the ¥ vectors out of the X vectors.
And since X = VA~ (assuming A~ exists) then A™! tells us how to build the ¥ vectors from
the ¥ vectors. We can go in either direction, from the X vectors to the ¥ vectors or from the
¥ vectors to the X vectors.

Where W € span{X;, X,, X3}. Then

C1 dl

W= lel + szz + C3_f3 = [71 72 _fg] G| = X¢ = VA_IZ') =Vd = [i;l i;z 7_7)3] dZ = d17_7)1 + dzi?-)z + d3i7-)3
C3 d
3

dy
where ldzl =d=A""¢

ds
Vector ¢: how to build W out of X;,¥,, 3. Vector d: how to build W out of ¥y, 7,, V5.
So we see thatif W € span{X;, X,, X3}, then W € span{v,, U,, U3}
Conclusion: assuming A~ exists (that is, assuming we build the new vectors ¥;,¥,,¥; out of
the old vectors ¥;,X,, X3 in an invertible way), then every vector that can be built using the old
vectors X;,X,, X3 can also be built using the new vectors ¥, U5, U3, which themselves can be

built out of the old vectors. That is, span{v,, U,, U3} = span{Xy, X5, X3}.

The above idea will come up a little later today. For now, we move on to another idea.



Main goal for this section: given a set of linearly independent vectors {¥;, X, X3}, build a new
set of mutually orthogonal vectors {¥;, U,, U3} so that span{v,, U,, U3} = span{X;, ¥,, X3}.

Step 1 Given ¥; and X,, find ¥; and ¥, that are mutually orthogonal (orthogonal to each other)
and so that span{v,, v,} = span{X;, ¥,}.

Step 2 Now given a third vector X3, find U5 so that {¥, U, U3} are mutually orthogonal and so
that span{v,, U,, U3} = span{X;, X, X3}.

R, R Ty T3P
v3:x3—(,,4,171+4,,,172)
V1V V2V2

f3'¥2—>
_,_>172)
V22
So:
> > N S
V1 =% 2 =%
By = Ry — 213 2 Tt 7 =z
2= %2 1 ERER! 2 =X
Uy - Uy Dy - Uy
- - - - - - - -
5> o X3-U1_> x3'U2_> x3.v1—> x3.v2_) L
V3 =X3—5—=5 Vi —5—=7V, =V +5——=V,+VU; =Xx3
171'171 172 '1.72 171'171 172 '1.72
That is: That is:
_ - - - - _ - - - _ - - -
X2 V1 X3 Vq [ vy U, V5] R=[ X1 X3 X3]
1 - - =
V1V Vg-Vq
[ V) U, ¥5] X3 Uy =[ X X X3] So that:
0 1 S
V- -V - - - _ - - - -1
2 V2 [V, U, V3] =[x X %3]R
[0 0 1 |

So we see the new vectors {¥;,V,, U3} are built—in an invertible way (how can we easily see
that R is invertible?)—from the original vectors {¥;,X,, X3}, and consequently that
span{v,, U,, U3} = span{X;, X,, X3}, as described on the previous page.

See Theorem 11 on page 355 for the more general version of this process.
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Example: Suppose we are given {X;,X,, X3} = { =216 }

Find a set of orthogonal vectors {¥;,V,, U3} so that span{v,, V,, U3} = span{X,, X,, X3}

Using the Gram-Schmidt process:

5 1 5 1] [2
— = _fz'f;l—) _ —36 3 . _9 _(_ 3 _ 0
V2 = X2 vﬁl”l_ 1T =2| 73] 1|7 ]
1 1 1

2 _1 21 2 ~1 21 -1
- = _56)3"171—> _fng—> 2 E 3 _E 0 — 2 . 3 . 0 — —1
Vs=X3 -5 575,527 6l T2| 1| "% |1 T le| T 1| 7?1 3|

2 1 1l |2 1 1l -1

Notice that vectors ¥, 7,, V53 are mutually orthogonal: ¥, - v, =0, ¥, V3 =0, ¥, 73 = 0.
(I chose vectors so that all of the numbers would work out nicely. Usually that would not be the
case, but computers don’t care how nice or messy the numbers are.)

5)1 = 71 i71 = 321
Notice that v, =X, — (=3)V; , thatis, (=3)V; + ¥, = X, , thatis,
63:})3—161—27}2 1614‘2624‘63:}3
-1 2 -1 -1 5 2
30—1(1)?;:3—92
1 1 3 1 1 -2 6
1 1 -1 1 -2 2
Notation: [ 57-)1 i;z 7_7)3] R = [ 71 72 73]
That is: Q R = A

We could make the orthogonal vectors orthonormal by dividing each one by its own length.
(You’d also have to modify matrix R.) This makes the matrix factorization a bit more useful:

[-1/V12 2/V6 —1/V12] 1 c
3NI2 opE —113|[1V12 _3\/\/1? 1\/\/? |3 -9
1N12 16 312 1 06 f\/1—62 |1
1N12 16 —1/V12 L =2

I
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NONN

The above is the QR factorization of the matrix A (the columns of A are the three vectors
X1,%,X%3) where Q is an orthogonal matrix (so QTQ =1)and R is upper triangular. This is

pretty useful: given AX = b we can write QRxX = b, which multiplying both sides by QT
(which is the left inverse of Q) leads to RX = QTB, and solving for X is relatively easy since
R is upper triangular.



Given matrix A, it’s not too difficult to find Q, whose columns are the orthogonalized (using
Gram-Schmidt) columns of A4, but sometimes one can get a little confused in finding R. Here
is another approach, as described in the book.

Once you find Q (the version of Q with orthonormal columns), then

QR =A= QTQR =QT4, i.e. R =QTA

since QTQ =1 (since the columns of Q are orthonormal). So for the above example we have

R=Q"A=| 2/Vv6 0/Vv6 1/V6 1/V6

(—1/v12 312 1/V12 1/x/EH—1 5
—-1/V12 —-1/V12 3/V12 —-1/V12

2
-9 2
1 -2 6
1 -2 2

[12/V12 —36/¥12 12/V12

= 0 6/vV6 12/6

0 0 12/V12
V12 —-3V12 12
=] 0 V6 26
0 0 V12

as we found on the previous page.



