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Math 260 Section 6.3 
 
Most important ideas: 

• For a given subspace  𝑊𝑊  of  𝑅𝑅𝑛𝑛,  every vector  �⃗�𝑦  in  𝑅𝑅𝑛𝑛  can be written as the sum of a 
vector  �⃗�𝑦�  in  𝑊𝑊  and a vector  𝑧𝑧 = �⃗�𝑦 − �⃗�𝑦�  orthogonal to 𝑊𝑊. 

• The projection  �⃗�𝑦�  of vector  �⃗�𝑦  onto a subspace  𝑊𝑊  is the part of  �⃗�𝑦  that is in  𝑊𝑊. 
• How to find the projection of  �⃗�𝑦  onto  𝑊𝑊  if we have an orthogonal basis for  𝑊𝑊?  
• What it means for one vector space to be orthogonal to another vector space:  every 

vector in the one vector is orthogonal to every vector in the other. 
 
We saw in 6.1 that every subspace 𝑊𝑊 of 𝑅𝑅𝑛𝑛  has an orthogonal complement  𝑊𝑊⊥, which is the 
collection of all vectors that are orthogonal to all of the vectors in 𝑊𝑊. 
 
Example 1, in 𝑅𝑅3:  (1) if  𝑾𝑾  is (all of the vectors in) a plane through the origin, then 𝑾𝑾⊥ is (all 
of the vectors in) the line through the origin that is perpendicular to that plane;  (2) if  𝑾𝑾  is (all 
of the vectors on) a line through the origin, then 𝑾𝑾⊥ is (all of the vectors in) the plane through 
the origin that is perpendicular to that line.   This is like Figure 7 on page 334. 
 

Example 2, in 𝑅𝑅4:  Let 𝑊𝑊 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��
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��.  Call these  𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2.  Find 𝑊𝑊⊥, that is, find the 

collection of all vectors  �⃗�𝑥 = �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�  in  𝑅𝑅4 such that  �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� ⋅ �

1
−1
−1

1

� = 0  and  �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� ⋅ �

0
1
0
1

� = 0.  

 

That is,   �1 −1 −1 1
0 1 0 1� �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� = �00�  which leads to  �1 −1 −1 1
0 1 0 1 �

0
0�~ �1 0 −1 2

0 1 0 1 �
0
0�. 

 

So  �

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

� = �

𝑥𝑥3 − 2𝑥𝑥4
         −𝑥𝑥4
𝑥𝑥3
            𝑥𝑥4

� = 𝑥𝑥3 �

1
0
1
0

� + 𝑥𝑥4 �
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1

�,  so  𝑊𝑊⊥ = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠��
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��.  Call these  𝑢𝑢�⃗ 3  and  𝑢𝑢�⃗ 4. 

 

Notice that  𝑢𝑢�⃗ 1 ⋅ 𝑢𝑢�⃗ 3 = �

1
−1
−1

1

� ⋅ �

1
0
1
0

� = 0, and similarly,  𝑢𝑢�⃗ 1 ⋅ 𝑢𝑢�⃗ 4 = 0, 𝑢𝑢�⃗ 2 ⋅ 𝑢𝑢�⃗ 3 = 0, 𝑢𝑢�⃗ 2 ⋅ 𝑢𝑢�⃗ 4 = 0.   

 
So any vector  𝒄𝒄𝟏𝟏𝒖𝒖��⃗ 𝟏𝟏 + 𝒄𝒄𝟐𝟐𝒖𝒖��⃗ 𝟐𝟐  in  𝑾𝑾  is orthogonal to any vector  𝒄𝒄𝟑𝟑𝒖𝒖��⃗ 𝟑𝟑 + 𝒄𝒄𝟒𝟒𝒖𝒖��⃗ 𝟒𝟒  in  𝑾𝑾⊥:  

   
(𝒄𝒄𝟏𝟏𝒖𝒖��⃗ 𝟏𝟏 + 𝒄𝒄𝟐𝟐𝒖𝒖��⃗ 𝟐𝟐) ⋅ (𝒄𝒄𝟑𝟑𝒖𝒖��⃗ 𝟑𝟑 + 𝒄𝒄𝟒𝟒𝒖𝒖��⃗ 𝟒𝟒) = 𝒄𝒄𝟏𝟏𝒄𝒄𝟑𝟑 𝒖𝒖��⃗ 𝟏𝟏 ⋅ 𝒖𝒖��⃗ 𝟑𝟑 + 𝒄𝒄𝟏𝟏𝒄𝒄𝟒𝟒 𝒖𝒖��⃗ 𝟏𝟏 ⋅ 𝒖𝒖��⃗ 𝟒𝟒 + 𝒄𝒄𝟐𝟐𝒄𝒄𝟑𝟑 𝒖𝒖��⃗ 𝟐𝟐 ⋅ 𝒖𝒖��⃗ 𝟑𝟑 + 𝒄𝒄𝟐𝟐𝒄𝒄𝟒𝟒 𝒖𝒖��⃗ 𝟐𝟐 ⋅ 𝒖𝒖��⃗ 𝟒𝟒 

 

                                   = 𝒄𝒄𝟏𝟏𝒄𝒄𝟑𝟑(𝟎𝟎) + 𝒄𝒄𝟏𝟏𝒄𝒄𝟒𝟒(𝟎𝟎) + 𝒄𝒄𝟐𝟐𝒄𝒄𝟑𝟑(𝟎𝟎) + 𝒄𝒄𝟐𝟐𝒄𝒄𝟒𝟒(𝟎𝟎) = 𝟎𝟎 
 

We say that vector space  𝑊𝑊  (which is a subspace of  𝑅𝑅4)  is orthogonal to the vector space  𝑊𝑊⊥  
(another subspace of  𝑅𝑅4).  Too bad we can’t visualize any of this in 4 dimensions. 
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It turn out this is useful:  Any vector in 𝑅𝑅4 can be split into two parts:  one part that comes from 
𝑊𝑊  and the other part that comes from  𝑊𝑊⊥.  Back to this thought in a bit. 

 
Recall Theorem 5 from Section 6.2: 

 
 
Theorem 8 in Section 6.3 on page 348 says something similar: 
 

 
 
What’s the difference?  Now we are considering any vector  𝒚𝒚��⃗   in 𝑅𝑅𝑛𝑛, not just vectors in  𝑊𝑊.   
So 

𝒚𝒚��⃗ = 𝒚𝒚��⃗� + 𝒛𝒛�⃗  
where 

𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝑾𝑾𝒚𝒚��⃗   is the part of  𝒚𝒚��⃗   in  𝑾𝑾  
and 

𝒛𝒛�⃗ = 𝒚𝒚��⃗ − 𝒚𝒚��⃗�  is the 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 of  𝒚𝒚��⃗   orthogonal to 𝑾𝑾 
that is, the 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 of  𝒚𝒚��⃗   in  𝑾𝑾⊥                   

 
 
 
 
 
 
 
 
 
 
where (assuming 𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑝𝑝 are mutually orthogonal) 
 

𝒚𝒚��⃗� =
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟏𝟏
𝒖𝒖��⃗ 𝟏𝟏 ⋅ 𝒖𝒖��⃗ 𝟏𝟏

 𝒖𝒖��⃗ 𝟏𝟏 +
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟐𝟐
𝒖𝒖��⃗ 𝟐𝟐 ⋅ 𝒖𝒖��⃗ 𝟐𝟐

 𝒖𝒖��⃗ 𝟐𝟐 + ⋯+
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝒑𝒑
𝒖𝒖��⃗ 𝒑𝒑 ⋅ 𝒖𝒖��⃗ 𝒑𝒑

 𝒖𝒖��⃗ 𝒑𝒑 . 

𝑾𝑾 = 𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔{𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐, … ,𝒖𝒖��⃗ 𝒑𝒑} 

𝒚𝒚��⃗  

𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝑾𝑾𝒚𝒚��⃗  

𝒛𝒛�⃗ = 𝒚𝒚��⃗ − 𝒚𝒚��⃗� 
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Example 3, in 𝑅𝑅4:  in 𝑅𝑅4.  𝒚𝒚��⃗ = �

 𝟏𝟏𝟏𝟏
−𝟏𝟏
−𝟏𝟏
−𝟓𝟓

�,  𝒖𝒖��⃗ 𝟏𝟏 = �

  𝟏𝟏
−𝟏𝟏
−𝟏𝟏
𝟏𝟏

� ,𝒖𝒖��⃗ 𝟐𝟐 = �

𝟎𝟎
𝟏𝟏
𝟎𝟎
𝟏𝟏

�, and  𝑾𝑾 = 𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔{𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐}. 

Then  

𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝑾𝑾𝒚𝒚��⃗ =
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟏𝟏
𝒖𝒖��⃗ 𝟏𝟏 ⋅ 𝒖𝒖��⃗ 𝟏𝟏

 �

 𝟏𝟏
−𝟏𝟏
−𝟏𝟏
𝟏𝟏

� +
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟐𝟐
𝒖𝒖��⃗ 𝟐𝟐 ⋅ 𝒖𝒖��⃗ 𝟐𝟐

 �

𝟎𝟎
𝟏𝟏
𝟎𝟎
𝟏𝟏

� =
𝟖𝟖
𝟒𝟒

 �

𝟏𝟏
−𝟏𝟏
−𝟏𝟏
𝟏𝟏

� +
−𝟔𝟔
𝟐𝟐

 �

𝟎𝟎
𝟏𝟏
𝟎𝟎
𝟏𝟏

� = �

𝟐𝟐
−𝟓𝟓
−𝟐𝟐
−𝟏𝟏

� 

 

and  𝒛𝒛�⃗ = 𝒚𝒚��⃗ − 𝒚𝒚��⃗� = � 

 𝟏𝟏𝟏𝟏
−𝟏𝟏
−𝟏𝟏
−𝟓𝟓

 � − �

𝟐𝟐
−𝟓𝟓
−𝟐𝟐
−𝟏𝟏

 � = �

𝟗𝟗
𝟒𝟒
𝟏𝟏

−𝟒𝟒

 �, which is  ⊥  𝒖𝒖��⃗ 𝟏𝟏 and  𝒖𝒖��⃗ 𝟐𝟐,  �

𝟗𝟗
𝟒𝟒
𝟏𝟏

−𝟒𝟒

 � ⋅ �

  1
−1
−1

1

� = 0 ,  �

𝟗𝟗
𝟒𝟒
𝟏𝟏

−𝟒𝟒

 � ⋅ �

0
1
0
1

� = 0, 

 
and thus is in 𝑊𝑊⊥.   
 

For  𝑾𝑾 = 𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔��

  𝟏𝟏
−𝟏𝟏
−𝟏𝟏
𝟏𝟏

� , �

𝟎𝟎
𝟏𝟏
𝟎𝟎
𝟏𝟏

��, on Page 1 of this handout we found  𝑾𝑾⊥ = 𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔��

𝟏𝟏
𝟎𝟎
𝟏𝟏
𝟎𝟎

� , �

−𝟐𝟐
−𝟏𝟏
𝟎𝟎
𝟏𝟏

�� , 

 

and (after a little work) we could find that  �

𝟗𝟗
𝟒𝟒
𝟏𝟏

−𝟒𝟒

 � = 𝟏𝟏 �

𝟏𝟏
𝟎𝟎
𝟏𝟏
𝟎𝟎

� − 𝟒𝟒 �

−𝟐𝟐
−𝟏𝟏
𝟎𝟎
𝟏𝟏

� . 

 
So  𝒚𝒚��⃗   is the sum of a vector in  𝑾𝑾  and a vector in  𝑾𝑾⊥:  
 

𝒚𝒚��⃗ = �

 𝟏𝟏𝟏𝟏
−𝟏𝟏
−𝟏𝟏
−𝟓𝟓

� = �

𝟐𝟐
−𝟓𝟓
−𝟐𝟐
−𝟏𝟏

� + �

𝟗𝟗
𝟒𝟒
𝟏𝟏

−𝟒𝟒

� . 

 

                                                     The part of  𝒚𝒚��⃗   in 𝑾𝑾   ↑            ↑  The part of  𝒚𝒚��⃗   in  𝑾𝑾⊥ 
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One final interesting thought—see Theorem 10, page 351.  Suppose  �𝑢𝑢�⃗ 1, 𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑝𝑝�   is an 
orthonormal basis for 𝑊𝑊, then 
  
�⃗�𝑦� = 𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑊𝑊�⃗�𝑦                      

 

    =
�⃗�𝑦 ⋅ 𝑢𝑢�⃗ 1
𝑢𝑢�⃗ 1 ⋅ 𝑢𝑢�⃗ 1

 𝑢𝑢�⃗ 1 +
�⃗�𝑦 ⋅ 𝑢𝑢�⃗ 2
𝑢𝑢�⃗ 2 ⋅ 𝑢𝑢�⃗ 2

 𝑢𝑢�⃗ 2 + ⋯+
�⃗�𝑦 ⋅ 𝑢𝑢�⃗ 𝑝𝑝
𝑢𝑢�⃗ 𝑝𝑝 ⋅ 𝑢𝑢�⃗ 𝑝𝑝

 𝑢𝑢�⃗ 𝑝𝑝   since  �𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑝𝑝�  is orthogonal      
 

    =  �⃗�𝑦 ⋅ 𝑢𝑢�⃗ 1   𝑢𝑢�⃗ 1 +  �⃗�𝑦 ⋅ 𝑢𝑢�⃗ 2   𝑢𝑢�⃗ 2 + ⋯+  �⃗�𝑦 ⋅ 𝑢𝑢�⃗ 𝑝𝑝   𝑢𝑢�⃗ 𝑝𝑝   since  �𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑝𝑝�  is orthonormal    
 

    =  (𝑢𝑢�⃗ 1𝑇𝑇�⃗�𝑦) 𝑢𝑢�⃗ 1 +  (𝑢𝑢�⃗ 2𝑇𝑇�⃗�𝑦) 𝑢𝑢�⃗ 2 + ⋯+   �𝑢𝑢�⃗ 𝑝𝑝𝑇𝑇�⃗�𝑦� 𝑢𝑢�⃗ 𝑝𝑝         

    =    � 𝑢𝑢�⃗ 1  𝑢𝑢�⃗ 2  ⋯   𝑢𝑢�⃗ 𝑝𝑝 �  

⎣
⎢
⎢
⎡𝑢𝑢�⃗ 1

𝑇𝑇�⃗�𝑦
𝑢𝑢�⃗ 2𝑇𝑇�⃗�𝑦
⋮

𝑢𝑢�⃗ 𝑝𝑝𝑇𝑇�⃗�𝑦⎦
⎥
⎥
⎤
     

    =    𝑈𝑈𝑈𝑈𝑇𝑇�⃗�𝑦  where  𝑈𝑈 = �𝑢𝑢�⃗ 1  𝑢𝑢�⃗ 2 ⋯   𝑢𝑢�⃗ 𝑝𝑝�.   
 
Whoa!  So the projection of  𝒚𝒚��⃗   onto 𝑾𝑾 = 𝒔𝒔𝒑𝒑𝒔𝒔𝒔𝒔�𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐, … ,𝒖𝒖��⃗ 𝒑𝒑�  is  𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝑾𝑾𝒚𝒚��⃗ = 𝑼𝑼𝑼𝑼𝑻𝑻𝒚𝒚��⃗ .   
 
In the previous example: 

𝑈𝑈 = �

  1 0
−1 1
−1 0

1 1

�   so  𝑈𝑈𝑈𝑈𝑇𝑇 = �

  1 0
−1 1
−1 0

1 1

� �1 −1 −1 1
0 1 0 1� = �

1/4 −1/4 −1/4 1/4
−1/4 3/4 1/4 1/4
−1/4 1/4 1/4 −1/4

1/4 1/4 −1/4 3/4

� . 

 

So  �⃗�𝑦� = 𝑠𝑠𝑝𝑝𝑝𝑝𝑗𝑗𝑊𝑊�⃗�𝑦 = 𝑈𝑈𝑈𝑈𝑇𝑇�⃗�𝑦 = �

1/4 −1/4 −1/4 1/4
−1/4 3/4 1/4 1/4
−1/4 1/4 1/4 −1/4

1/4 1/4 −1/4 3/4

� �

 11
−1
−1
−5

� = �

2
−5
−2
−1

� . 

 
Note:   𝑈𝑈𝑈𝑈𝑇𝑇  is always symmetric since  (𝑈𝑈𝑈𝑈𝑇𝑇)𝑇𝑇 = (𝑈𝑈𝑇𝑇)𝑇𝑇𝑈𝑈𝑇𝑇 = 𝑈𝑈𝑈𝑈𝑇𝑇. 
 
Note:  if  {𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐, … ,𝒖𝒖��⃗ 𝒔𝒔}  is a basis for 𝑹𝑹𝒔𝒔 , then  𝑈𝑈 = [𝑢𝑢�⃗ 1  𝑢𝑢�⃗ 2 ⋯   𝑢𝑢�⃗ 𝑛𝑛]   is square, and thus         
𝑈𝑈𝑇𝑇𝑈𝑈 = 𝐼𝐼 ⇒ 𝑈𝑈𝑈𝑈𝑇𝑇 = 𝐼𝐼   which means that  𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝑾𝑾𝒚𝒚��⃗ = 𝑼𝑼𝑼𝑼𝑻𝑻𝒚𝒚��⃗ = 𝑰𝑰𝒚𝒚��⃗ = 𝒚𝒚��⃗ .  That is, we can 
exactly (rather than approximately) build  �⃗�𝑦   as a linear combination of  {𝑢𝑢�⃗ 1,𝑢𝑢�⃗ 2, … ,𝑢𝑢�⃗ 𝑛𝑛}, as 
described in Theorem 5 in Section 6.2. 
 

Summary:  if  𝑼𝑼  is orthogonal (its columns are orthonormal), then  𝑼𝑼𝑻𝑻𝑼𝑼 = 𝑰𝑰  and  𝑼𝑼𝑼𝑼𝑻𝑻  is 
used to find  𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝑾𝑾𝒚𝒚��⃗ = 𝑼𝑼𝑼𝑼𝑻𝑻𝒚𝒚��⃗ ,  which is the best approximation of  𝒚𝒚��⃗   (that is,  𝒚𝒚��⃗�  is the 
vector closest to 𝒚𝒚��⃗ )  that can be built from (as a linear combination of) the columns of  𝑼𝑼. 

 


