Most important ideas:

- For a given subspace W of \mathbb{R}^n , every vector \vec{y} in \mathbb{R}^n can be written as the sum of a vector $\hat{\vec{y}}$ in W and a vector $\vec{z} = \vec{y} \hat{\vec{y}}$ orthogonal to W.
- The projection $\hat{\vec{y}}$ of vector \vec{y} onto a subspace W is the part of \vec{y} that is in W.
- How to find the projection of \vec{y} onto W if we have an orthogonal basis for W?
- What it means for one vector space to be orthogonal to another vector space: every vector in the one vector is orthogonal to every vector in the other.

We saw in 6.1 that every subspace W of \mathbb{R}^n has an orthogonal complement W^{\perp} , which is the collection of all vectors that are orthogonal to all of the vectors in W.

Example 1, in \mathbb{R}^3 : (1) if W is (all of the vectors in) a plane through the origin, then W^{\perp} is (all of the vectors in) the line through the origin that is perpendicular to that plane; (2) if W is (all of the vectors on) a line through the origin, then W^{\perp} is (all of the vectors in) the plane through the origin that is perpendicular to that line. This is like Figure 7 on page 334.

Example 2, in
$$\mathbb{R}^4$$
: Let $W = span \left\{ \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$. Call these \vec{u}_1, \vec{u}_2 . Find W^{\perp} , that is, find the collection of all vectors $\vec{x} = \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}$ in \mathbb{R}^4 such that $\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} \cdot \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} = 0$ and $\begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} \cdot \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} = 0$.

That is,
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 which leads to $\begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

So
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 - 2x_4 \\ -x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
, so $W^{\perp} = span \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\}$. Call these \vec{u}_3 and \vec{u}_4 .

Notice that $\vec{u}_1 \cdot \vec{u}_3 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = 0$, and similarly, $\vec{u}_1 \cdot \vec{u}_4 = 0$, $\vec{u}_2 \cdot \vec{u}_3 = 0$, $\vec{u}_2 \cdot \vec{u}_4 = 0$.

So any vector $c_1\vec{u}_1 + c_2\vec{u}_2$ in W is orthogonal to any vector $c_3\vec{u}_3 + c_4\vec{u}_4$ in W^{\perp} :

$$(c_1\vec{u}_1 + c_2\vec{u}_2) \cdot (c_3\vec{u}_3 + c_4\vec{u}_4) = c_1c_3\vec{u}_1 \cdot \vec{u}_3 + c_1c_4\vec{u}_1 \cdot \vec{u}_4 + c_2c_3\vec{u}_2 \cdot \vec{u}_3 + c_2c_4\vec{u}_2 \cdot \vec{u}_4$$
$$= c_1c_3(0) + c_1c_4(0) + c_2c_3(0) + c_2c_4(0) = 0$$

We say that vector space W (which is a subspace of R^4) is orthogonal to the vector space W^{\perp} (another subspace of R^4). Too bad we can't visualize any of this in 4 dimensions.

It turn out this is useful: Any vector in R^4 can be split into two parts: one part that comes from W and the other part that comes from W^{\perp} . Back to this thought in a bit.

Recall Theorem 5 from Section 6.2:

Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$

are given by

$$c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$$
 $(j = 1, \dots, p)$

Theorem 8 in Section 6.3 on page 348 says something similar:

Let W be a subspace of \mathbb{R}^n . Then each y in \mathbb{R}^n can be written uniquely in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{1}$$

where $\hat{\mathbf{y}}$ is in W and z is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p$$
(2)

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

What's the difference? Now we are considering any vector \vec{y} in \mathbb{R}^n , not just vectors in W. So

$$\vec{y} = \hat{\vec{y}} + \vec{z}$$

where

 $\widehat{\vec{y}} = proj_W \vec{y}$ is the part of \vec{y} in W

and

$$z = y - y$$
 is the part of y orthogonal to W
that is, the part of \vec{y} in W^{\perp}

where (assuming $\vec{u}_1, \vec{u}_2, ..., \vec{u}_p$ are mutually orthogonal)

$$\widehat{\vec{y}} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \, \vec{u}_1 + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \, \vec{u}_2 + \dots + \frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p} \, \vec{u}_p \, .$$

Example 3, in
$$R^4$$
: in R^4 . $\vec{y} = \begin{bmatrix} 11 \\ -1 \\ -1 \\ -5 \end{bmatrix}$, $\vec{u}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$, and $W = span\{\vec{u}_1, \vec{u}_2\}$.

Then

$$\widehat{\vec{y}} = proj_W \vec{y} = \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} = \frac{8}{4} \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} + \frac{-6}{2} \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\\-5\\-2\\-1 \end{bmatrix}$$

and
$$\vec{z} = \vec{y} - \hat{\vec{y}} = \begin{bmatrix} 11 \\ -1 \\ -1 \\ -5 \end{bmatrix} - \begin{bmatrix} 2 \\ -5 \\ -2 \\ -1 \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \\ 1 \\ -4 \end{bmatrix}$$
, which is $\perp \vec{u}_1$ and \vec{u}_2 , $\begin{bmatrix} 9 \\ 4 \\ 1 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = 0$, $\begin{bmatrix} 9 \\ 4 \\ 1 \\ -4 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} = 0$,

and thus is in W^{\perp} .

For
$$W = span \left\{ \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix} \right\}$$
, on Page 1 of this handout we found $W^{\perp} = span \left\{ \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\-1\\0\\1 \end{bmatrix} \right\}$,

and (after a little work) we could find that $\begin{bmatrix} 9\\4\\1\\-4 \end{bmatrix} = 1 \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix} - 4 \begin{bmatrix} -2\\-1\\0\\1 \end{bmatrix}.$

So \vec{y} is the sum of a vector in W and a vector in W^{\perp} :

$$\vec{y} = \begin{bmatrix} 11\\ -1\\ -1\\ -5 \end{bmatrix} = \begin{bmatrix} 2\\ -5\\ -2\\ -1 \end{bmatrix} + \begin{bmatrix} 9\\ 4\\ 1\\ -4 \end{bmatrix}.$$

The part of \vec{y} in $W \uparrow \uparrow$ The part of \vec{y} in W^{\perp}

One final interesting thought—see Theorem 10, page 351. Suppose $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_p\}$ is an orthonormal <u>basis</u> for W, then

$$\begin{split} \hat{\vec{y}} &= proj_W \vec{y} \\ &= \frac{\vec{y} \cdot \vec{u}_1}{\vec{u}_1 \cdot \vec{u}_1} \vec{u}_1 + \frac{\vec{y} \cdot \vec{u}_2}{\vec{u}_2 \cdot \vec{u}_2} \vec{u}_2 + \dots + \frac{\vec{y} \cdot \vec{u}_p}{\vec{u}_p \cdot \vec{u}_p} \vec{u}_p \text{ since } \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p\} \text{ is orthogonal} \\ &= \vec{y} \cdot \vec{u}_1 \quad \vec{u}_1 + \vec{y} \cdot \vec{u}_2 \quad \vec{u}_2 + \dots + \quad \vec{y} \cdot \vec{u}_p \quad \vec{u}_p \text{ since } \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_p\} \text{ is orthonormal} \\ &= (\vec{u}_1^T \vec{y}) \vec{u}_1 + (\vec{u}_2^T \vec{y}) \vec{u}_2 + \dots + \quad (\vec{u}_p^T \vec{y}) \vec{u}_p \\ &= \left[\vec{u}_1 \quad \vec{u}_2 \ \cdots \ \vec{u}_p \right] \begin{bmatrix} \vec{u}_1^T \vec{y} \\ \vdots \\ \vec{u}_p^T \vec{y} \end{bmatrix} \\ &= \quad UU^T \vec{y} \text{ where } U = \left[\vec{u}_1 \quad \vec{u}_2 \ \cdots \ \vec{u}_p \right]. \end{split}$$

Whoa! So the projection of \vec{y} onto $W = span\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_p\}$ is $\hat{\vec{y}} = proj_W \vec{y} = UU^T \vec{y}$.

In the previous example:

$$U = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} \text{ so } UU^{T} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ -1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/4 & -1/4 & -1/4 & 1/4 \\ -1/4 & 3/4 & 1/4 & 1/4 \\ -1/4 & 1/4 & -1/4 \\ 1/4 & 1/4 & -1/4 & 3/4 \end{bmatrix}.$$

So $\hat{\vec{y}} = proj_{W}\vec{y} = UU^{T}\vec{y} = \begin{bmatrix} 1/4 & -1/4 & -1/4 & 1/4 \\ -1/4 & 3/4 & 1/4 & -1/4 \\ -1/4 & 3/4 & 1/4 & -1/4 \\ 1/4 & 1/4 & -1/4 & 3/4 \end{bmatrix} \begin{bmatrix} 11 \\ -1 \\ -1 \\ -1 \\ -5 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ -2 \\ -1 \end{bmatrix}.$

Note: UU^T is always symmetric since $(UU^T)^T = (U^T)^T U^T = UU^T$.

Note: if $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is a <u>basis</u> for \mathbb{R}^n , then $U = [\vec{u}_1 \ \vec{u}_2 \cdots \vec{u}_n]$ is square, and thus $U^T U = I \Rightarrow U U^T = I$ which means that $\hat{\vec{y}} = \mathbf{proj}_W \vec{y} = U U^T \vec{y} = \vec{y}$. That is, we can exactly (rather than approximately) build \vec{y} as a linear combination of $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$, as described in Theorem 5 in Section 6.2.

Summary: if U is orthogonal (its columns are orthonormal), then $U^T U = I$ and UU^T is used to find $\hat{\vec{y}} = proj_W \vec{y} = UU^T \vec{y}$, which is the best approximation of \vec{y} (that is, $\hat{\vec{y}}$ is the vector closest to \vec{y}) that can be built from (as a linear combination of) the columns of U.