Math 260 Section 6.3

Most important ideas:
e For a given subspace W of R", every vector y in R™ can be written as the sum of a
vector y in W andavector Z = j — y orthogonal to W.
e The projection 33/ of vector y onto a subspace W isthe part of y thatisin W.
e How to find the projection of y onto W if we have an orthogonal basis for W?
e What it means for one vector space to be orthogonal to another vector space: every
vector in the one vector is orthogonal to every vector in the other.

We saw in 6.1 that every subspace W of R™ has an orthogonal complement W+, which is the
collection of all vectors that are orthogonal to all of the vectorsin IW/.

Example 1, in R3: (1) if W is (all of the vectors in) a plane through the origin, then W+ is (all
of the vectors in) the line through the origin that is perpendicular to that plane; (2)if W is (all
of the vectors on) a line through the origin, then W+ is (all of the vectors in) the plane through
the origin that is perpendicular to that line. This is like Figure 7 on page 334.
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Example 2, in R*: Let W = span :1‘,[4 . Call these 1i;,%,. Find W1, that is, find the
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That is, [1 -1 -1 1]Ix2 =[g] which leads to [(1) _i -1 18]~[(1) 0 -1 2|0].

0 1 0 1l|x3 0 1 1 0 110
X4
xl x3 - 2x4 1 —2 1 2
So 5| = |xs = X3 1 + x4 ol so W+ = span 11’1 ol Call these u; and uy.
X4 0. 1 0 1
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Notice that i - 5 = -1, (1) = 0, and similarly, 1, -1, = 0,y - U3 = 0, Uy - U, = 0.
1 0

So any vector ¢ + c,U, in W is orthogonal to any vector ¢35 + c iy in W:

(Clﬁ)l + Czﬁ)z) . (Cgﬁ)g + C4_ﬁ)4_) = C1C3 ﬁ)l . ﬁ)g + C1Cy ﬁ)l . ﬁ‘l— + CyC3 ﬁ)z . ﬁ)g + CyCy ﬁ)z . ﬁ‘l—
=¢1€3(0) + ¢1€4(0) + €2¢3(0) + €2¢4(0) =0
We say that vector space W (which is a subspace of R*) is orthogonal to the vector space W+

(another subspace of R*). Too bad we can’t visualize any of this in 4 dimensions.

1



It turn out this is useful: Any vector in R* can be split into two parts: one part that comes from
W and the other part that comes from W+*. Back to this thought in a bit.

Recall Theorem 5 from Section 6.2:

Let {uy, ..., u,} be an orthogonal basis for a subspace W of R". For eachy in W,
the weights in the linear combination
y - (‘I U] + -t + (.‘Pllp
are given by
}l ] uJ._

Ci= & -t el
= llj*ll_;' (J p)

Theorem 8 in Section 6.3 on page 348 says something similar:

Let W be a subspace of R”. Then each y in R" can be written uniquely in the form

y=y+z (1)
where § is in W and z is in W, In fact, if {uy, ..., u,} is any orthogonal basis of
W, then

e y-u y+u
y = up e+ “u, (2)
Ut u u,u,

andz=y —¥.

What's the difference? Now we are considering any vector y in R™, not just vectors in /.
So
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where
y = projyy isthe partof ¥ in W
and

Z =79 —y isthe partof ¥ orthogonal to W
that is, the partof y in W+

5; —
Z=y-y
y = projyy

W = spanfii, uy, ..., U,}

where (assuming s, Uy, ..., i, are mutually orthogonal)

—_ — - — - —

s yu y-uz; _, y- Uy

7=ﬁﬁ1+ﬁu2+---+ﬁﬁp.
Uuq - uq U, - Uy up'up
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Example 3,in R*: inR*. y = 1 =1 %2 =, ,and W = span{u,, u,}.
-5 1 1
Then
o 1 oo 0 1 0 2
BN . _Yy-up (-1 Y-uz |1|_8|-1| —6]1 -5
= pro == + = = — + —
Y =projwy Uy uq |[—1| Uy -u, |0 4 (-1 2 |0 -2
1 1 1 1 -1
11 2 9 9 1
—)_—)_’—\)_ _1 _ _5 _ 4‘ . . — — 4’ _1 _
and z=y—y= _1 o |= 1,whlchlsJ_uland Uy, 1 _1|=
-5 -1 —4 —4 1
and thus is in W+.
11 [0 1
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For W = span “1l'lol on Page 1 of this handout we found W+ = span 1
1] 11 0

9
and (after a little work) we could find that l 11} ] =1 l
—4

So y isthe sum of a vectorin W and a vectorin W+
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One final interesting thought—see Theorem 10, page 351. Suppose {iy,1,, ...,ﬁp} is an
orthonormal basis for W, then

Yy =Dprojwy
y-u y-u y-u
" Uy " U .
= U AUt U, since {t,,u,, ..., Uy} is orthogonal
ul * ul uz * uz p up

=y-U U+ Y Uy Up+-+ YU, U, since {tiy, Uy, ..., U} isorthonormal

@y, + @y u u2+ -+ (dly)

[41]

= [ﬁl ﬁZ l_l)p] quyl

—)T—)

ury
= UUTY where U = [u; Uy Ty

Whoa! So the projection of ¥ onto W = spanf{iiy, iy, ..., U,} is ¥ = proj,y = UUTy.

In the previous example:

10 10 1/4 -1/4 —1/4 1/4
-1 1 -1 1|p -1 —1 17 |-1/4 374 174 1/4
U=|21 of U0 =11 o [o ] 1—1/4 1/4  1/4 —1/4|
11 11 1/4 1/4 -1/4 3/4

~1/4 3/4 1/4 1/4
~1/4 1/4 1/4 -1/4
1/4 1/4 —-1/4 3/4

1/4 —-1/4 -1/4 1/41711 2
So y = projyy = UUTY = ]l_

Note: UUT is always symmetric since (UUT)T = (UT)TUT = UUT.

Note: if {uq, U, .., U,} is a basis for R™, then U = [u; U, - U,| is square, and thus
UTU =1= UUT =1 which means that y = proj,y = UUTY = Iy = 3. That is, we can
exactly (rather than approximately) build y as a linear combination of {uj, U, ..., U,}, as
described in Theorem 5 in Section 6.2.

Summary: if U is orthogonal (its columns are orthonormal), then UTU =1 and UUT is
used to find ¥ = proj, ¥ = UUTY, which is the best approximation of ¥ (thatis, ¥ is the
vector closest to y) that can be built from (as a linear combination of) the columns of U.



