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Math 260 Section 6.2 
 
Most important ideas: 

• Projection of one vector onto another vector. 
• Orthogonal vectors. 
• Orthonormal vectors; orthogonal matrix, including that its transpose is its inverse (whhaaaat?) 

 
Reminder:  Suppose  𝑓𝑓(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑥𝑥2 (where  𝑐𝑐 > 0).  Then  𝑓𝑓(𝑥𝑥)  is minimized where: 
 

𝒇𝒇′(𝒙𝒙) = 𝒃𝒃 + 𝟐𝟐𝟐𝟐𝟐𝟐 = 𝟎𝟎  which occurs when  𝒙𝒙 = − 𝒃𝒃
𝟐𝟐𝟐𝟐

. 
 
Suppose  𝑓𝑓(𝛼𝛼) = 𝑎𝑎 + 𝑏𝑏 𝛼𝛼 + 𝑐𝑐 𝛼𝛼2  (where  𝑐𝑐 > 0).  Then  𝑓𝑓(𝛼𝛼)  is minimized where: 
 

 𝒇𝒇′(𝜶𝜶) = 𝒃𝒃 + 𝟐𝟐𝟐𝟐𝟐𝟐 = 𝟎𝟎  which occurs when  𝜶𝜶 = − 𝒃𝒃
𝟐𝟐𝟐𝟐

. 
 
Goal:  Given vectors  𝑢𝑢�⃗   and  𝑦⃗𝑦, find the point/vector  𝛼𝛼𝑢𝑢�⃗    
on/along  𝑢𝑢�⃗   that is closest to  𝑦⃗𝑦.  
 
Note that the vector between  𝑦⃗𝑦  and  𝛼𝛼𝑢𝑢�⃗   is  𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ .  So 
another way of thinking of this problem is that we to find the 
value of  𝛼𝛼  for which we minimize the distance from  𝒚𝒚��⃗   to  
𝜶𝜶𝒖𝒖��⃗ ,  that is, the size of  𝒚𝒚��⃗ − 𝜶𝜶𝒖𝒖��⃗ :  

‖𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ‖ = �(𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ) ⋅ (𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ) 
 
Minimizing  ‖𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ‖  is equivalent to minimizing  ‖𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ‖2.  Let  
 

𝑓𝑓(𝛼𝛼) = ‖𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ‖2 = (𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ) ⋅ (𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ) 
 

                      = 𝑦⃗𝑦 ⋅ 𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ⋅ 𝑦⃗𝑦 − 𝛼𝛼𝑢𝑢�⃗ ⋅ 𝑦⃗𝑦 + 𝛼𝛼2𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗ = 𝑦⃗𝑦 ⋅ 𝑦⃗𝑦 − 2𝛼𝛼𝑢𝑢�⃗ ⋅ 𝑦⃗𝑦 + 𝛼𝛼2𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗   
 
Then  𝒇𝒇(𝜶𝜶)  is minimized where: 

           𝒇𝒇′(𝜶𝜶) = 𝟎𝟎 − 𝟐𝟐 𝒖𝒖��⃗ ⋅ 𝒚𝒚��⃗ + 𝟐𝟐 𝜶𝜶 𝒖𝒖��⃗ ⋅ 𝒖𝒖��⃗ = 𝟎𝟎  which occurs when  𝜶𝜶 = 
𝒚𝒚��⃗  ⋅ 𝒖𝒖��⃗
𝒖𝒖��⃗  ⋅ 𝒖𝒖��⃗

 . 
 

Example 1:  𝒖𝒖��⃗ = �𝟐𝟐𝟏𝟏�  and  𝒚𝒚��⃗ = �𝟏𝟏𝟐𝟐�.  Then the point  𝒚𝒚��⃗�  on  𝑢𝑢�⃗   that is closest to  𝑦⃗𝑦  is known as 

the projection of  𝒚𝒚��⃗   onto  𝒖𝒖��⃗ : 
 

 

𝒚𝒚��⃗� = 𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝒖𝒖��⃗ 𝒚𝒚��⃗ = 𝜶𝜶 𝒖𝒖��⃗ =
𝒚𝒚 ���⃗ ⋅  𝒖𝒖��⃗
𝒖𝒖��⃗  ⋅  𝒖𝒖��⃗

 𝒖𝒖��⃗ =
𝟒𝟒
𝟓𝟓
�𝟐𝟐𝟏𝟏� = �𝟖𝟖/𝟓𝟓

𝟒𝟒/𝟓𝟓� . 

 

Note that  𝒚𝒚��⃗ − 𝒚𝒚��⃗�   ⊥   𝒖𝒖��⃗   since  �−𝟑𝟑/𝟓𝟓
𝟔𝟔/𝟓𝟓� ⋅ �

𝟐𝟐
𝟏𝟏� = 0.  

 
Alternate (and very important!) approach:  find 
the value of  𝜶𝜶  so that  𝒚𝒚��⃗ − 𝜶𝜶𝒖𝒖��⃗   is orthogonal to  
𝒖𝒖��⃗ .  That is, choose 𝜶𝜶  so that  (𝒚𝒚��⃗ − 𝜶𝜶𝒖𝒖��⃗ ) ⋅ 𝒖𝒖��⃗ = 𝟎𝟎: 
 

  𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ − 𝜶𝜶𝒖𝒖��⃗ ⋅ 𝒖𝒖��⃗ = 𝟎𝟎  ⇒    𝜶𝜶 =
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗
𝒖𝒖��⃗ ⋅ 𝒖𝒖��⃗

 

 

𝒚𝒚��⃗� = �𝟖𝟖/𝟓𝟓
𝟒𝟒/𝟓𝟓� 

𝒚𝒚��⃗ = �𝟏𝟏𝟐𝟐� 

𝒚𝒚��⃗ − 𝜶𝜶 𝒖𝒖��⃗  

𝒖𝒖��⃗  

𝜶𝜶𝒖𝒖��⃗  

𝒚𝒚��⃗  

𝒖𝒖��⃗ = �𝟐𝟐𝟏𝟏� 

𝒚𝒚��⃗ − 𝒚𝒚��⃗� = �−𝟑𝟑/𝟓𝟓
𝟔𝟔/𝟓𝟓� 



2 
 

 

Next, suppose  𝑢𝑢�⃗   is some other vector but in the same direction as the  𝑢𝑢�⃗ = �21�  in Example 1. 

 

Example 2:  If  𝒖𝒖��⃗ = � −𝟏𝟏−𝟏𝟏/𝟐𝟐�  and  𝒚𝒚��⃗ = �𝟏𝟏𝟐𝟐�, then 

𝒚𝒚��⃗�  =  𝒑𝒑𝒑𝒑𝒑𝒑𝒋𝒋𝒖𝒖��⃗ 𝒚𝒚��⃗  =  𝒚𝒚 ���⃗ ⋅ 𝒖𝒖��⃗
𝒖𝒖 ���⃗ ⋅ 𝒖𝒖��⃗

 𝒖𝒖��⃗ = 𝟐𝟐
𝟓𝟓/𝟒𝟒

� −𝟏𝟏−𝟏𝟏/𝟐𝟐� = −𝟖𝟖
𝟓𝟓
�
−𝟏𝟏
− 𝟏𝟏

𝟐𝟐
� = �𝟖𝟖/𝟓𝟓

𝟒𝟒/𝟓𝟓�  

as found before. 
 
If  𝒚𝒚��⃗� = 𝒚𝒚 ���⃗ ⋅ 𝒖𝒖��⃗

𝒖𝒖 ���⃗ ⋅ 𝒖𝒖��⃗
 𝒖𝒖��⃗ ,  then  𝒚𝒚��⃗ − 𝒚𝒚��⃗�  is orthogonal to  𝒖𝒖��⃗ : 

 

  �𝒚𝒚��⃗ − 𝒚𝒚��⃗�� ⋅ 𝒖𝒖��⃗ = �𝒚𝒚��⃗ − 𝒚𝒚��⃗ ⋅𝒖𝒖��⃗
𝒖𝒖��⃗ ⋅𝒖𝒖��⃗

𝒖𝒖��⃗ � = 𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ − 𝒚𝒚��⃗ ⋅𝒖𝒖��⃗
𝒖𝒖��⃗ ⋅𝒖𝒖��⃗

𝒖𝒖��⃗ ⋅ 𝒖𝒖��⃗ = 𝟎𝟎.   
 

Note that  𝑦⃗𝑦 ⋅ 𝑢𝑢�⃗   and  𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗   are simply numbers. 
 

 
 
Definition:  �𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐, … ,𝒖𝒖��⃗ 𝒑𝒑�  is an orthogonal set if every vector in the set is orthogonal to every 
other vector in the set.  That is,  𝒖𝒖��⃗ 𝒊𝒊 ⋅ 𝒖𝒖��⃗ 𝒋𝒋 = 𝟎𝟎  for  𝒊𝒊 ≠ 𝒋𝒋.  (What about if  𝑖𝑖 = 𝑗𝑗?  Recall that  𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗ ≥ 0  
and that  𝑢𝑢�⃗ ⋅ 𝑢𝑢�⃗ = 0  if and only if  𝑢𝑢�⃗ = 0�⃗ .)  
 

Example 3:   𝑢𝑢�⃗ 1 = �

3
−2

1
3

� , 𝑢𝑢�⃗ 2 = �

−1
3

−3
4

� , 𝑢𝑢�⃗ 3 = �

3
8
7
0

�.   

 
𝑢𝑢�⃗ 1 ⋅ 𝑢𝑢�⃗ 2 = −3 − 6 − 3 + 12 = 0.  
 

𝑢𝑢�⃗ 1 ⋅ 𝑢𝑢�⃗ 3 =   9 − 16 + 7 + 0 = 0. 
 

𝑢𝑢�⃗ 2 ⋅ 𝑢𝑢�⃗ 3 = −3 + 24 − 21 + 0 = 0. 
 
What does it look like for two vectors in  𝑅𝑅4  to be orthogonal?  I don’t know what anything in 
four dimensions looks like!  Luckily, it doesn’t matter at all whether we can visualize this. 

Orthogonal is even better than linearly independent.  (Is this similar to how being infamous is 
even better than famous in “The Three Amigos.”)  In fact, any set of (non-zero) orthogonal 
vectors is linearly independent.  But being linearly independent does not necessarily mean 
the vectors are orthogonal.  Let’s look at Theorem 4 and its proof on page 338. 

Example 4:  𝑢𝑢�⃗ 1 = �31� ,𝑢𝑢�⃗ 2 = �−2
   6�.  These vectors are orthogonal and linearly independent. 

 

        𝑢𝑢�⃗ 1 = �31� ,𝑢𝑢�⃗ 2 = �24�.  These vectors are linearly independent, but not orthogonal. 

 
  

𝒖𝒖��⃗ = � −𝟏𝟏−𝟏𝟏/𝟐𝟐� 

𝒚𝒚��⃗� = �𝟖𝟖/𝟓𝟓
𝟒𝟒/𝟓𝟓� 

𝒚𝒚��⃗ − 𝒚𝒚��⃗� = �−𝟑𝟑/𝟓𝟓
𝟔𝟔/𝟓𝟓� 

𝒚𝒚��⃗ = �𝟏𝟏𝟐𝟐� 
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Extremely useful:  If  �𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐, … ,𝒖𝒖��⃗ 𝒑𝒑�  is an orthogonal basis for  𝑾𝑾  and if  𝒚𝒚��⃗ ∈ 𝑾𝑾,  then 
 

𝒚𝒚��⃗ =
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟏𝟏
𝒖𝒖��⃗ 𝟏𝟏 ⋅ 𝒖𝒖��⃗ 𝟏𝟏

 𝒖𝒖��⃗ 𝟏𝟏 +
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝟐𝟐
𝒖𝒖��⃗ 𝟐𝟐 ⋅ 𝒖𝒖��⃗ 𝟐𝟐

 𝒖𝒖��⃗ 𝟐𝟐 + ⋯+
𝒚𝒚��⃗ ⋅ 𝒖𝒖��⃗ 𝒑𝒑
𝒖𝒖��⃗ 𝒑𝒑 ⋅ 𝒖𝒖��⃗ 𝒑𝒑

 𝒖𝒖��⃗ 𝒑𝒑 

 
Intuition: 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 1

𝑢𝑢��⃗ 1⋅𝑢𝑢��⃗ 1
 𝑢𝑢�⃗ 1 is the part of  𝑦⃗𝑦  that comes from  𝑢𝑢�⃗ 1.  

 

 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 2
𝑢𝑢��⃗ 2⋅𝑢𝑢��⃗ 2

 𝑢𝑢�⃗ 2 is the part of  𝑦⃗𝑦  that comes from  𝑢𝑢�⃗ 2.    And so on. 

 
Let’s look at Theorem 5 and its proof on page 339. 
 

Example 5 (compare to Example 1):  If   𝑢𝑢�⃗ 1 = �21� , 𝑢𝑢�⃗ 2 = �−1
2� , 𝑦⃗𝑦 = �12�,  then 

 

𝑦⃗𝑦 = 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 1
𝑢𝑢��⃗ 1⋅𝑢𝑢��⃗ 1

 𝑢𝑢�⃗ 1 + 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 2
𝑢𝑢��⃗ 2⋅𝑢𝑢��⃗ 2

 𝑢𝑢�⃗ 2 = 4
5

 �21� + 3
5

 �−1
2� =  �8/5

4/5� + �−3/5
6/5� .  

 

Example 6:  𝑢𝑢�⃗ 1 = �

3
−2

1
3

� , 𝑢𝑢�⃗ 2 = �

−1
3

−3
4

� , 𝑢𝑢�⃗ 3 = �

3
8
7
0

�.    Suppose  𝑦⃗𝑦 = �

14
−4  
16
 1

� .    

Then    𝑦⃗𝑦 = 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 1
𝑢𝑢��⃗ 1⋅𝑢𝑢��⃗ 1

 𝑢𝑢�⃗ 1  + 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 2
𝑢𝑢��⃗ 2⋅𝑢𝑢��⃗ 2

 𝑢𝑢�⃗ 2 + 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 3
𝑢𝑢��⃗ 3⋅𝑢𝑢��⃗ 3

 𝑢𝑢�⃗ 3 
 

                 =  69
23

 �

3
−2

1
3

� + −70
  35

�

−1
3

−3
4

� + 122
122

�

3
8
7
0

� = 3 �

3
−2

1
3

� + (−2) �

−1
3

−3
4

� + 1 �

3
8
7
0

� = �

9
−6

3
9

� + �

2
−6

6
−8

� + �

3
8
7
0

� 

 
Note that the three vectors  𝑢𝑢�⃗ 1, 𝑢𝑢�⃗ 2,𝑢𝑢�⃗ 3  do not span  𝑅𝑅4.  (How do we know this?).  But I chose a 
vector  𝑦⃗𝑦  that is in their span, that is, that can be built (as a linear combination) from them.  
One case we’ll deal with in the next book section is when  𝑦⃗𝑦  actually cannot be built from them. 
 
Caution:  the above formula is not true if the basis is not orthogonal. 
 

Example 7:  If   𝑢𝑢�⃗ 1 = �12� ,𝑢𝑢�⃗ 2 = �34� , 𝑦⃗𝑦 = �56�.  So  𝑦⃗𝑦  can be built (is a linear combination) from  

𝑢𝑢�⃗ 1  and  𝑢𝑢�⃗ 2, but 
𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 1
𝑢𝑢��⃗ 1⋅𝑢𝑢��⃗ 1

 𝑢𝑢�⃗ 1 + 𝑦𝑦�⃗ ⋅𝑢𝑢��⃗ 2
𝑢𝑢��⃗ 2⋅𝑢𝑢��⃗ 2

 𝑢𝑢�⃗ 2 = 17
5

 �12� + 39
25

 �34� ≠ �56� .  
 
Definition:  Even better than orthogonal is orthonormal, which means both orthogonal and 
normalized (length 1):  �𝒖𝒖��⃗ 𝟏𝟏,𝒖𝒖��⃗ 𝟐𝟐, … ,𝒖𝒖��⃗ 𝒑𝒑�  is orthonormal if every vector in the set is orthogonal 
to every other vector in the set and if every vector is of length 1: 
 

𝒖𝒖��⃗ 𝒊𝒊 ⋅ 𝒖𝒖��⃗ 𝒋𝒋 ( = 𝒖𝒖��⃗ 𝒊𝒊𝑻𝑻𝒖𝒖��⃗ 𝒋𝒋 ) = �𝟏𝟏  𝐢𝐢𝐢𝐢  𝒊𝒊 = 𝒋𝒋
𝟎𝟎  𝐢𝐢𝐢𝐢  𝒊𝒊 ≠ 𝒋𝒋 
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Example 8:  𝑢𝑢�⃗ 1 = 1
√23

�

3
−2

1
3

� , 𝑢𝑢�⃗ 2 = 1
√35

�

−1
3

−3
4

� , 𝑢𝑢�⃗ 3 = 1
√122

�

3
8
7
0

�.  

 

We saw in Example 6 that these vectors are orthogonal, and we have now normalized them 
(divided each one by its own length) to make them each length 1.  For example, 
   

𝑢𝑢�⃗ 1 ⋅ 𝑢𝑢�⃗ 1 = 9
23

+ 4
23

+ 1
23

+ 9
23

= 23
23

= 1 ,  and similarly for  𝑢𝑢�⃗ 2  and  𝑢𝑢�⃗ 3. 
 
A matrix  𝑼𝑼 = �𝒖𝒖��⃗ 𝟏𝟏  𝒖𝒖��⃗ 𝟐𝟐   ⋯    𝒖𝒖��⃗ 𝒑𝒑�  with orthonormal columns is an orthogonal matrix, or unitary 
matrix, hence the letter  𝑼𝑼.  (I would call it an orthonormal matrix, but I’m not in charge.) 
 

Example 9:  𝑈𝑈 = �
1/√3 −1/√2
1/√3     0
1/√3    1/√2

�.  Notice that the columns are ortho normal. 

Notice that   𝑈𝑈𝑇𝑇𝑈𝑈 = �   1/√3 1/√3 1/√3
−1/√2 0 1/√2

� �
1/√3 −1/√2
1/√3     0
1/√3    1/√2

� = �1 0
0 1 � . 

 

In general, 𝑼𝑼𝑻𝑻𝑼𝑼 = �𝒖𝒖��⃗ 𝟏𝟏  𝒖𝒖��⃗ 𝟐𝟐   ⋯    𝒖𝒖��⃗ 𝒑𝒑�
𝑻𝑻
�𝒖𝒖��⃗ 𝟏𝟏  𝒖𝒖��⃗ 𝟐𝟐   ⋯    𝒖𝒖��⃗ 𝒑𝒑�  =    

⎣
⎢
⎢
⎢
⎡𝒖𝒖��⃗ 𝟏𝟏

𝑻𝑻

𝒖𝒖��⃗ 𝟐𝟐𝑻𝑻
⋮
𝒖𝒖��⃗ 𝒑𝒑𝑻𝑻⎦
⎥
⎥
⎥
⎤
�𝒖𝒖��⃗ 𝟏𝟏  𝒖𝒖��⃗ 𝟐𝟐   ⋯    𝒖𝒖��⃗ 𝒑𝒑�   

                            =   

⎣
⎢
⎢
⎢
⎡𝒖𝒖��⃗ 𝟏𝟏

𝑻𝑻𝒖𝒖��⃗ 𝟏𝟏 𝒖𝒖��⃗ 𝟏𝟏𝑻𝑻𝒖𝒖��⃗ 𝟐𝟐 ⋯ 𝒖𝒖��⃗ 𝟏𝟏𝑻𝑻𝒖𝒖��⃗ 𝒑𝒑
𝒖𝒖��⃗ 𝟐𝟐𝑻𝑻𝒖𝒖��⃗ 𝟏𝟏 𝒖𝒖��⃗ 𝟐𝟐𝑻𝑻𝒖𝒖��⃗ 𝟐𝟐 ⋯ 𝒖𝒖��⃗ 𝟐𝟐𝑻𝑻𝒖𝒖��⃗ 𝒑𝒑
⋮ ⋮ ⋱ ⋮

𝒖𝒖��⃗ 𝒑𝒑𝑻𝑻𝒖𝒖��⃗ 𝟏𝟏 𝒖𝒖��⃗ 𝒑𝒑𝑻𝑻𝒖𝒖��⃗ 𝟐𝟐 ⋯ 𝒖𝒖��⃗ 𝒑𝒑𝑻𝑻𝒖𝒖��⃗ 𝒑𝒑⎦
⎥
⎥
⎥
⎤

 =   �

𝟏𝟏 𝟎𝟎 ⋯ 𝟎𝟎
𝟎𝟎 𝟏𝟏 ⋯ 𝟎𝟎
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 ⋯ 𝟏𝟏

�  

 
Continuation of Example 9:  add a third column which is orthogonal to the first two, and of 
size/length 1 (there is only one such vector—why?) to the two existing columns: 
 

𝑈𝑈 = �
1/√3 −1/√2    1/√6
1/√3     0 −2/√6
1/√3    1/√2    1/√6

� 

 

𝑈𝑈𝑇𝑇𝑈𝑈 = �
   1/√3   1/√3 1/√3
−1/√2   0 1/√2
    1/√6 −2/√6 1/√6

� �
1/√3 −1/√2   1/√6
1/√3     0 −2/√6 
1/√3    1/√2  1/√6

� = �
1 0 0
0 1 0
0 0 1

�  

 
So  𝑈𝑈𝑇𝑇  is the inverse of  𝑈𝑈. 
 
Recall from the Invertible Matrix Theorem for square matrix  𝐴𝐴, if 𝐴𝐴𝐴𝐴 = 𝐼𝐼  then it is also true 
that  𝐵𝐵𝐵𝐵 = 𝐼𝐼.  So if  𝑼𝑼𝑻𝑻𝑼𝑼 = 𝑰𝑰  it must also be that  𝑼𝑼𝑼𝑼𝑻𝑻 = 𝑰𝑰, that is, (𝑈𝑈𝑇𝑇)𝑇𝑇𝑈𝑈𝑇𝑇 = 𝐼𝐼.  So  𝑈𝑈𝑇𝑇  is 
also an orthogonal matrix (columns are orthonormal).  That is, if the columns of  𝑈𝑈  are 
orthonormal, then the columns of  𝑈𝑈𝑇𝑇  (the rows of  𝑈𝑈)  are also.  This is a curious result. 
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𝑈𝑈𝑇𝑇 = �
   1/√3   1/√3 1/√3
−1/√2   0 1/√2
    1/√6 −2/√6 1/√6

�.   Is it obvious the columns are orthonormal?  Nope. 

 

We can check for orthogonality of columns , and we can check for normality (length 1). 

 
Theorem 7 is interesting.  In particular, if  𝑈𝑈  is an orthogonal matrix, i.e.  𝑈𝑈𝑇𝑇𝑈𝑈 = 𝐼𝐼, then: 
 

    ‖𝑼𝑼𝒙𝒙��⃗ ‖ = �(𝑼𝑼𝒙𝒙��⃗ )𝑻𝑻(𝑼𝑼𝒙𝒙��⃗ ) = √𝒙𝒙��⃗ 𝑻𝑻𝑼𝑼𝑻𝑻𝑼𝑼𝒙𝒙��⃗ = √𝒙𝒙��⃗ 𝑻𝑻𝑰𝑰𝒙𝒙��⃗ = √𝒙𝒙��⃗ 𝑻𝑻𝒙𝒙��⃗ = ‖𝒙𝒙��⃗ ‖  
 

    (𝑼𝑼𝒙𝒙��⃗ ) ⋅ (𝑼𝑼𝒚𝒚��⃗ ) = (𝑼𝑼𝒙𝒙��⃗ )𝑻𝑻(𝑼𝑼𝒚𝒚��⃗ ) = 𝒙𝒙��⃗ 𝑻𝑻𝑼𝑼𝑻𝑻𝑼𝑼𝒚𝒚��⃗ = 𝒙𝒙��⃗ 𝑻𝑻𝑰𝑰𝒚𝒚��⃗ = 𝒙𝒙��⃗ 𝑻𝑻𝒚𝒚��⃗ = 𝒙𝒙��⃗ ⋅ 𝒚𝒚��⃗    
 

Property (a) means that multiplying a vector by a orthogonal matrix doesn’t change its size.  A 
unitary matrix transforms (e.g. rotates, reflects, etc.) a vector, but doesn’t change its size.  
Note: all rotation matrices are unitary, but not all unitary matrices are rotation matrices.  
Property (b) means that multiplying by an orthogonal matrix doesn’t change the 
orthogonality of two vectors:  if they were orthogonal before multiplying by  𝑼𝑼,  then they 
still are, and if they were not, they are still are not.  These are unusual and useful properties. 
 

Example:  Suppose  𝐴𝐴 = �1 2
3 4�, 𝑈𝑈 = �

1
√2

1
√2

1
√2

− 1
√2

�, 𝑥⃗𝑥 = �52� , 𝑦⃗𝑦 = �−4
10�.  Notice 𝑥⃗𝑥 ⋅ 𝑦⃗𝑦 = 0. 

 

So    ‖𝑥⃗𝑥‖ = √29 

and  ‖𝑦⃗𝑦‖ = √116 
 

𝐴𝐴𝑥⃗𝑥 = � 9
23�    and   ‖𝐴𝐴𝑥⃗𝑥‖ = √610 

 

𝐴𝐴𝑦⃗𝑦 = �16
28�    and   ‖𝐴𝐴𝑦⃗𝑦‖ = √1040 

 

𝑈𝑈𝑥⃗𝑥 = �
7
√2
3
√2

�  and  ‖𝑈𝑈𝑥⃗𝑥‖ = √29 

 

𝑈𝑈𝑦⃗𝑦 = �
6
√2

− 14
√2

�  and  ‖𝑈𝑈𝑦⃗𝑦‖ = √116 

 

Notice that  (𝑈𝑈𝑥𝑥��⃗ ) ⋅ (𝑈𝑈𝑦𝑦��⃗ ) = 0  but  (𝐴𝐴𝑥𝑥��⃗ ) ⋅ (𝐴𝐴𝑦𝑦��⃗ ) ≠ 0.   

One final note:  all eigenvalues of any unitary matrix are of size 1.  The eigenvalues of the above 
2 × 2   𝑈𝑈  are  ±1,  and the eigenvalues of the 3 × 3 matrix from the previous page are  1  and  

≈ −.00720072 ± .999974𝑖𝑖,  the size of which is  �(−.00720072)2 + (±.999974)2 ≈ 1.   


