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Math 260 Section 6.1 
 
Most important ideas: 

• Dot product (also called inner product); norm/length of a vector. 

• Properties of dot products given in Theorem 1 on page 331. 

• Orthogonality of two vectors:  dot product is 0. 
Orthogonality of one vector to a vector space. 
Orthogonality of one vector space to another vector space:  all vectors in the one vector 
space are orthogonal to all vectors in the other.   

 
First, a little motivation about why we need the idea of two vectors being perpendicular in 
dimensions higher than  𝑅3, dimensions in which we can’t visualize things. 
 
What is the point on the floor closest to a particular fire sprinkler on the ceiling? 
 

The point on the floor that is directly below the fire sprinkler. 
 

What is the point along  [
𝟐
𝟏
]  that is closest to [

𝟏
𝟐
]? 

 

The point looks like it is a bit before point  (2,1) .   
We’ll later find that the exact point is  (8/5, 4/5) . 
 
Why does this point (8/5, 4/5)  seem correct?  The vector  (-3/5, 6/5)  that points  
from  (8/5, 4/5)  to  (2,1)  seems perpendicular to the vector (2,1). 
 

Notice that  [
−𝟑/𝟓

𝟔/𝟓
] ⋅ [

𝟐
𝟏
] = 𝟎,  which means the two vectors are indeed perpendicular.  

 

So how could we find the point in  𝑅4  along  [

 1
 2
 3
 4

 ]  that is closest to  [

−2
3
0
5

 ] ?   

 

We can’t draw a picture of this, so to find the desired vector, we need a way to 
describe/recognize when a vector in 𝑅4 (or higher dimension) is “perpendicular” to another 
vector without a picture.  In general, we refer to “perpendicular” as  orthogonal . 
 

Vectors  �⃗⃗�   and  �⃗⃗�   in 𝑹𝟐 or 𝑹𝟑 are perpendicular if:  �⃗⃗� ⋅ �⃗⃗� = 𝟎 .   
 

�⃗⃗� ⋅ �⃗⃗�   is called the  dot product  of �⃗⃗�  and �⃗⃗� .  Also useful to us:  �⃗⃗� ⋅ �⃗⃗� = �⃗⃗� 𝑻�⃗⃗� .  See page 330. 
 

In general, two vectors  �⃗⃗�   and  �⃗⃗�   of any size (�⃗�   and  𝑣   can be of any size, but they must be of 
the same size, e.g. both are from  𝑅3  or both are from  𝑅4, etc.) are orthogonal if  �⃗⃗� ⋅ �⃗⃗� = 𝟎. 
Notation:  �⃗⃗� ⊥ �⃗⃗�   is the notation that  �⃗⃗�   and  �⃗⃗�   are orthogonal.  (We’ll see later that we can 
also have orthogonal functions and other non-vectors.) 

Example 1:  [

1
2
3
4

] ⋅ [

−2
3
0

−1

]  = (1)(−2) + (2)(3) + (3)(0) + (4)(−1) = 0,  so the vectors are orthogonal. 

What does this look like?  I don’t know—we can’t visualize it—luckily we don’t need to visualize 
any of this for the idea of orthogonality to be extremely useful to us. 
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The length/size/norm of a vector 𝑣  is ‖𝑣 ‖ = √𝑣 ⋅ 𝑣  . 
 

Example 2:   For  �⃗� = [
2
1
],  ‖�⃗� ‖ = √(𝟐)(𝟐) + (𝟏)(𝟏) = √𝟓.  What does this look like? 

We don’t need a diagram to compute the length of vector (and of course for vectors from  𝑅4 
and higher, we can’t draw a diagram, even if we wanted to).  
 

For  �⃗� = [
14
7

],  ‖�⃗� ‖ = √(14)(14) + (7)(7) = √245 = 7√5 
 

For  �⃗� = [
−2
−1

],  ‖�⃗� ‖ = √(−2)(−2) + (−1)(−1) = √5 
 

For  �⃗� = [
1

−2
3
],  ‖�⃗� ‖ = √(1)(1) + (−2)(−2) + (3)(3) = √14 

 

For  �⃗� = [

2
−5

0
3

],  ‖�⃗� ‖ = √(2)(2) + (−5)(−5) + (0)(0) + (3)(3) = √38 

Property (d) in Theorem 1 tells us that the size/length of a vector is always positive, unless the 
vector is the zero vector, in which case its size is 0.  Also:  ‖𝑐𝑣 ‖ = |𝑐|‖𝑣 ‖, as we saw above. 
 

Note:  for any vector 𝑣 ,  
�⃗⃗� 

‖�⃗⃗� ‖
  is the unit vector in the same direction as  �⃗⃗�   but with unit length (length 1).   

 

Example 3:  𝑣 = [
2
1
]  so  

�⃗� 

‖�⃗� ‖
=

𝟏

√𝟓
[
𝟐
𝟏
] = [

𝟐/√𝟓

𝟏/√𝟓
],  which has size  √(

𝟐

√𝟓
) (

𝟐

√𝟓
) + (

𝟏

√𝟓
)(

𝟏

√𝟓
) = √

𝟒

𝟓
+

𝟏

𝟓
= 𝟏.   

        𝑣 = [
2/4
1/4

]  so  
�⃗� 

‖�⃗� ‖
=

𝟏

√𝟓/𝟏𝟔
[
𝟐/𝟒
𝟏/𝟒

] =
𝟒

√𝟓
[
𝟐/𝟒
𝟏/𝟒

] = [
𝟐/√𝟓

𝟏/√𝟓
]. 

 

In general, the size of a vector  
�⃗� 

‖�⃗� ‖
  that has been normalized (divided by its own length/size) is 

 

‖
�⃗⃗� 

‖�⃗⃗� ‖
‖ = √

�⃗⃗� 

‖�⃗⃗� ‖
⋅

�⃗⃗� 

‖�⃗⃗� ‖
= √(

𝟏

‖�⃗⃗� ‖
) (

𝟏

‖�⃗⃗� ‖
) (�⃗⃗� ⋅ �⃗⃗� ) =

𝟏

‖�⃗⃗� ‖
√�⃗⃗� ⋅ �⃗⃗� =

𝟏

‖�⃗⃗� ‖
‖�⃗⃗� ‖ = 𝟏. 

 

(Remember that  ‖𝑣 ‖  is a simply a number.)   
 
The distance between two vectors (points) is  𝑑𝑖𝑠𝑡(�⃗� , 𝑣 ) = ‖�⃗� − 𝑣 ‖.  See Figure 4 on page 333. 
 
On page 333:    [𝑑𝑖𝑠𝑡(𝑢, 𝑣)]2    = ‖�⃗� − 𝑣 ‖2 = ‖�⃗� ‖2 + ‖𝑣 ‖2 − 2 �⃗� ⋅ 𝑣 . 

                     [𝑑𝑖𝑠𝑡(𝑢, −𝑣)]2 = ‖�⃗� + 𝑣 ‖2 = ‖�⃗� ‖2 + ‖𝑣 ‖2 + 2 �⃗� ⋅ 𝑣 .  
 
If  �⃗� ⊥ 𝑣 ,  then  �⃗� ⋅ 𝑣 = 0,  and  ‖�⃗� + 𝑣 ‖2 = ‖�⃗� ‖2 + ‖𝑣 ‖2.  This is the Pythagorean Theorem.                  
See page 334.  This is true in any dimension, including dimensions we can’t visualize (𝑅4 and 
higher).  In 𝑅2 and 𝑅3,  �⃗� ⋅ 𝑣 = ‖�⃗� ‖ ‖𝑣 ‖ cos 𝜃  where  𝜃  is angle between  �⃗�   and  𝑣 .  See Figure 
on page 335.  We will prove two simple but extremely useful properties in class.  These are true 
in any dimension: 

  ‖�⃗� + 𝑣 ‖ ≤ ‖�⃗� ‖ + ‖𝑣 ‖  The size of the sum  ≤  the sum of the sizes.  This is the Triangle Inequality.   

      |�⃗� ⋅ 𝑣 | ≤ ‖�⃗� ‖‖𝑣 ‖       The size of the (dot) product ≤ the product of the sizes. 
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Next, given a vector space  𝑾  (a collection of vectors) from  𝑹𝒏,  there is another vector 
space (another collection of vectors), also from  𝑹𝒏, that is orthogonal to  𝑾. 
 

Example 4:  𝑊 = 𝑠𝑝𝑎𝑛 {[
1
2
3
] , [

4
5
6
]}.   So  𝑊  is a subspace of vectors in  𝑅3,  since  𝑊  is the 

collection of all vectors than are linear combinations) of  [
1
2
3
]  and  [

4
5
6
], which come from 𝑅3. 

 

What is the dimension of  𝑊?  2, since there are 2 linearly independent vectors in the basis for  𝑾. 
 

What do you think  𝑊  looks like?  𝑾 would be a 2-dimensional object that exists (sometimes 

we say “lives”) in 𝑹𝟑.  So  𝑾  is a plane which passes through the origin. 
 
So let’s find  𝑊⊥, the collection of all vectors that are orthogonal  ⊥  to all of the vectors in 𝑊. 
Vector space  𝑾⊥  is called the orthogonal complement of  𝑾.  (One meaning of the word 
“complement” is “the part left over” or “the other part”.  For example, the complement of/to 
the ladies in class would be the men in class.)  A vector is orthogonal to all vectors in  𝑊  if and 
only if it is orthogonal to each vector in the basis of  𝑊.  Let’s show this in class.   
 

So  𝑊⊥ consists of all vectors  𝑥 = [

𝑥1

𝑥2

𝑥3

]  for which  

[

𝑥1

𝑥2

𝑥3

] ⋅ [
1
2
3
] = 1𝑥1 + 2𝑥2 + 3𝑥3 = 0   and   [

𝑥1

𝑥2

𝑥3

] ⋅ [
4
5
6
] = 4𝑥1 + 5𝑥2 + 6𝑥3 = 0 

That is, 

[
1 2 3
4 5 6

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
]. 

Then  

[
1 2 3
4 5 6

|
0
0
]~ [

1 0 −1
0 1 2

|
0
0
]  ⇒  [

𝑥1

𝑥2

𝑥3

] = [

𝑥3

−2𝑥3

𝑥3

] = 𝑥3 [
1

−2
1
]. 

 

So  𝑊⊥  consists of all multiples of the vector [
1

−2
1
],  a 1-dimensional vector space (a line that 

pass through the origin). 
 

You can verify that   [
1

−2
1
]   ⊥   both  [

1
2
3
]  and  [

4
5
6
] . 

 
If  𝑾 is a subspace of 𝑹𝒏, then 𝐝𝐢𝐦𝑾 + 𝐝𝐢𝐦𝑾⊥ = 𝒏.  In example above, we had  2 + 1 = 3. 
 
See Book Figure 7 on page 334 for a picture of this. 
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Example 5:   Let  𝐴 = [
1 4 7
2 5 8
3 6 9

] ,  and let  𝑊 = 𝐶𝑜𝑙 𝐴 = 𝑠𝑝𝑎𝑛 {[
1
2
3
] , [

4
5
6
] , [

7
8
9
]} . 

 

Since by definition  {[
1
2
3
] , [

4
5
6
] , [

7
8
9
]}  generates/spans  𝑊, then 𝑾⊥ consists of all of the vectors 

�⃗⃗� = [

𝒙𝟏

𝒙𝟐

𝒙𝟑

]  that are orthogonal to these three vectors:  

 

[

𝑥1

𝑥2

𝑥3

] ⋅ [
1
2
3
] = 1𝑥1 + 2𝑥2 + 3𝑥3 = 0  

 

[

𝑥1

𝑥2

𝑥3

] ⋅ [
4
5
6
] = 4𝑥1 + 5𝑥2 + 6𝑥3 = 0  

 

[

𝑥1

𝑥2

𝑥3

] ⋅ [
7
8
9
] = 7𝑥1 + 8𝑥2 + 9𝑥3 = 0  

 
 

So  𝑾⊥ consists of all multiples of  [
𝟏

−𝟐
𝟏
 ].  Notice that [

𝟏
−𝟐

𝟏
 ]  ⊥  each column of 𝑨. 

We had already seen in Example 4 that  [
1

−2
1
 ]  is orthogonal to  [

1
2
3
]  and  [

4
5
6
],  so any vector 

built out of them, including   [
7
8
9
] = − 1 [

1
2
3
] + 2 [

4
5
6
],   will also be orthogonal to  [

1
−2

1
 ]. 

 
In the above example,  

𝐶𝑜𝑙 𝐴 = 𝑠𝑝𝑎𝑛 {[
1
2
3
] , [

4
5
6
] , [

7
8
9
]} = 𝑠𝑝𝑎𝑛 {[

1
2
3
] , [

4
5
6
]}. 

 
Note:  In the above example, the vectors  𝑥   that are  ⊥  𝑊 are the same vectors in the null 
space of  𝐴𝑇.  That is,  

(𝑪𝒐𝒍 𝑨)⊥ = 𝑵𝒖𝒍 𝑨𝑻, 
 

and similarly (replacing  𝐴𝑇  with  𝐴  and  𝐴  with  𝐴𝑇) we have  
 

(𝑪𝒐𝒍 𝑨𝑻)⊥ = (𝑹𝒐𝒘 𝑨)⊥ = 𝑵𝒖𝒍 𝑨. 
 

This is Theorem 3 on page 335.  This seems like kind of a strange result, but it’s pretty 
straightforward if you think (slowly) about it. 
  

[
1 2 3
4 5 6
7 8 9

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0
]    leads to 

[
  1 2 3
  4 5 6
  7 8 9

|
  0  
  0  
  0  

] ~⋯~ [
  1   0 −1
  0   1   2
  0   0   0

|
  0  
  0  
  0  

] 
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Compare the Law of Cosines (Google it) to the bottom half of Book page 335. 

 

Two cases:  if  𝜃 < 90°  or  if 𝜃 > 90°  

(if  𝜃 = 90°, we have the Pythagorean Theorem) 

Example 6:  �⃗⃗� = [
𝟐
𝟏
], �⃗⃗� = [

𝟏
𝟑
].   

Note that  ‖�⃗⃗� ‖ = √𝟓 ≈ 𝟐. 𝟐𝟒  and  ‖�⃗⃗� ‖ = √𝟏𝟎 ≈ 𝟑. 𝟏𝟔.   
 

‖�⃗⃗� + �⃗⃗� ‖2 = ‖�⃗⃗� ‖𝟐 + ‖�⃗⃗� ‖𝟐 + 𝟐 �⃗⃗� ⋅ �⃗⃗� = 𝟓 + 𝟏𝟎 + 𝟐(𝟓) = 𝟐𝟓,   so  ‖�⃗� + 𝑣 ‖2 = 𝟓 .   
 

(Compare this to using the Pythagorean Theorem to see that the size of vector  [
𝟑
𝟒
]  is  5.)  

   

𝐜𝐨𝐬 𝜽 =
�⃗⃗� ⋅�⃗⃗� 

‖�⃗⃗� ‖‖�⃗⃗� ‖
=

𝟓

(√𝟓)(√𝟏𝟎)
=

𝟓

√𝟓𝟎
=

√𝟐

𝟐
⇒ 𝜽 = 𝐜𝐨𝐬−𝟏 (

√𝟐

𝟐
) = 𝟒𝟓°  is the angle between  [

𝟐
𝟏
]  and  [

𝟏
𝟑
]. 

 
   

In general, if  𝜃 < 90°, then  cos 𝜃 > 0  which means  �⃗� ⋅ 𝑣 >  0, so  ‖�⃗� + 𝑣 ‖2  >  ‖�⃗� ‖2 + ‖𝑣 ‖2.   

(Notice that for the above example we have  52  > (√5)
2
+ (√10)

2
.) 

 
 
 

Example 7:  �⃗⃗� = [
𝟐
𝟏
], �⃗⃗� = [

−𝟓
𝟏
]. 

Note that  ‖�⃗⃗� ‖ = √𝟓 ≈ 𝟐. 𝟐𝟒  and  ‖�⃗⃗� ‖ = √𝟐𝟔 ≈ 𝟓. 𝟏𝟎.   
 

‖�⃗⃗� + �⃗⃗� ‖𝟐 = ‖�⃗⃗� ‖𝟐 + ‖�⃗⃗� ‖𝟐 + 𝟐 �⃗⃗� ⋅ �⃗⃗� = 𝟓 + 𝟐𝟔 + 𝟐(−𝟗) = 𝟏𝟑,  so  ‖�⃗⃗� + �⃗⃗� ‖𝟐 = √𝟏𝟑. 
 

(Compare this to using the Pythagorean Theorem to see that the size of vector  [
−𝟑

𝟐
]  is  √13.) 

   

𝐜𝐨𝐬 𝜽 =
�⃗⃗� ⋅�⃗⃗� 

‖�⃗⃗� ‖‖�⃗⃗� ‖
= −

𝟗

(√𝟓)(√𝟐𝟔)
= −

𝟗

√𝟏𝟑𝟎
⇒ 𝜽 = 𝐜𝐨𝐬−𝟏 (−

𝟗

√𝟏𝟑𝟎
) ≈ 𝟏𝟒𝟐° is the angle between [

𝟐
𝟏
] and  [

−𝟓
𝟏
].  

 
In general, if  𝜃 > 90°, then  cos 𝜃 < 0  which means  �⃗� ⋅ 𝑣 <  0, so  ‖�⃗� + 𝑣 ‖2 <  ‖�⃗� ‖2 + ‖𝑣 ‖2.   

 (Notice that for the above example we have  (√13)
2
< (√5)

2
+ (√26)

2
.) 

The formula  ‖�⃗� + 𝑣 ‖2 = ‖�⃗� ‖2 + ‖𝑣 ‖2 + 2 �⃗� ⋅ 𝑣   is most useful for  𝑅3  as a theoretical result. 


