Most important ideas:

- Dot product (also called inner product); norm/length of a vector.
- Properties of dot products given in Theorem 1 on page 331.
- Orthogonality of two vectors: dot product is 0.
 - Orthogonality of one vector to a vector space.

Orthogonality of one vector space to another vector space: all vectors in the one vector space are orthogonal to all vectors in the other.

First, a little motivation about why we need the idea of two vectors being <u>perpendicular</u> in dimensions higher than R^3 , dimensions in which we can't visualize things.

What is the point on the floor closest to a particular fire sprinkler on the ceiling?

The point on the floor that is directly below the fire sprinkler.

What is the point along $\begin{bmatrix} 2\\1 \end{bmatrix}$ that is closest to $\begin{bmatrix} 1\\2 \end{bmatrix}$? The point looks like it is a bit before point (2,1).

The point looks like it is a bit before point (2,1). We'll later find that the exact point is (8/5, 4/5).

Why does this point (8/5, 4/5) seem correct? The vector (-3/5, 6/5) that points from (8/5, 4/5) to (2,1) seems *perpendicular* to the vector (2,1).

Notice that $\begin{bmatrix} -3/5 \\ 6/5 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 0$, which means the two vectors are indeed perpendicular.

So how could we find the point in R^4 along $\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix}$ that is closest to $\begin{bmatrix} -2\\ 3\\ 0\\ 5 \end{bmatrix}$?

We can't draw a picture of this, so to find the desired vector, we need a way to describe/recognize when a vector in R^4 (or higher dimension) is "perpendicular" to another vector without a picture. In general, we refer to "perpendicular" as <u>orthogonal</u>.

Vectors \vec{u} and \vec{v} in R^2 or R^3 are perpendicular if: $\vec{u} \cdot \vec{v} = 0$.

 $\vec{u} \cdot \vec{v}$ is called the <u>dot product</u> of \vec{u} and \vec{v} . Also useful to us: $\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$. See page 330.

In general, two vectors \vec{u} and \vec{v} of any size (\vec{u} and \vec{v} can be of any size, but they must be of the *same* size, e.g. both are from R^3 or both are from R^4 , etc.) are orthogonal if $\vec{u} \cdot \vec{v} = 0$. Notation: $\vec{u} \perp \vec{v}$ is the notation that \vec{u} and \vec{v} are orthogonal. (We'll see later that we can also have orthogonal functions and other non-vectors.)

Example 1: $\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} \cdot \begin{bmatrix} -2\\3\\0\\-1 \end{bmatrix} = (1)(-2) + (2)(3) + (3)(0) + (4)(-1) = 0$, so the vectors are orthogonal.

What does this look like? I don't know—we can't visualize it—luckily we don't need to visualize any of this for the idea of orthogonality to be extremely useful to us.

The length/size/norm of a vector \vec{v} is $\|\vec{v}\| = \sqrt{\vec{v} \cdot \vec{v}}$.

Example 2: For $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\|\vec{u}\| = \sqrt{(2)(2) + (1)(1)} = \sqrt{5}$. What does this look like? We don't need a diagram to compute the length of vector (and of course for vectors from R^4 and higher, we can't draw a diagram, even if we wanted to).

For
$$\vec{u} = \begin{bmatrix} 14\\7 \end{bmatrix}$$
, $\|\vec{u}\| = \sqrt{(14)(14) + (7)(7)} = \sqrt{245} = 7\sqrt{5}$
For $\vec{u} = \begin{bmatrix} -2\\-1 \end{bmatrix}$, $\|\vec{u}\| = \sqrt{(-2)(-2) + (-1)(-1)} = \sqrt{5}$
For $\vec{u} = \begin{bmatrix} 1\\-2\\3 \end{bmatrix}$, $\|\vec{u}\| = \sqrt{(1)(1) + (-2)(-2) + (3)(3)} = \sqrt{14}$
For $\vec{u} = \begin{bmatrix} 2\\-5\\0\\3 \end{bmatrix}$, $\|\vec{u}\| = \sqrt{(2)(2) + (-5)(-5) + (0)(0) + (3)(3)} = \sqrt{38}$

Property (d) in Theorem 1 tells us that the size/length of a vector is always positive, unless the vector is the zero vector, in which case its size is 0. Also: $||c\vec{v}|| = |c|||\vec{v}||$, as we saw above.

Note: for any vector \vec{v} , $\frac{\vec{v}}{\|\vec{v}\|}$ is the <u>unit vector</u> in the same direction as \vec{v} but with *unit* length (length 1). Example 3: $\vec{v} = \begin{bmatrix} 2\\1 \end{bmatrix}$ so $\frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5}\\1/\sqrt{5} \end{bmatrix}$, which has size $\sqrt{\left(\frac{2}{\sqrt{5}}\right)\left(\frac{2}{\sqrt{5}}\right) + \left(\frac{1}{\sqrt{5}}\right)\left(\frac{1}{\sqrt{5}}\right)} = \sqrt{\frac{4}{5} + \frac{1}{5}} = 1$. $\vec{v} = \begin{bmatrix} 2/4\\1/4 \end{bmatrix}$ so $\frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{5/16}} \begin{bmatrix} 2/4\\1/4 \end{bmatrix} = \frac{4}{\sqrt{5}} \begin{bmatrix} 2/4\\1/4 \end{bmatrix} = \begin{bmatrix} 2/\sqrt{5}\\1/\sqrt{5} \end{bmatrix}$.

In general, the size of a vector $\frac{\vec{v}}{\|\vec{v}\|}$ that has been normalized (divided by its own length/size) is

$$\left|\frac{\vec{\nu}}{\|\vec{\nu}\|}\right| = \sqrt{\frac{\vec{\nu}}{\|\vec{\nu}\|} \cdot \frac{\vec{\nu}}{\|\vec{\nu}\|}} = \sqrt{\left(\frac{1}{\|\vec{\nu}\|}\right)\left(\frac{1}{\|\vec{\nu}\|}\right) (\vec{\nu} \cdot \vec{\nu})} = \frac{1}{\|\vec{\nu}\|} \sqrt{\vec{\nu} \cdot \vec{\nu}} = \frac{1}{\|\vec{\nu}\|} \|\vec{\nu}\| = 1.$$

(Remember that $\|\vec{v}\|$ is a simply a number.)

The distance between two vectors (points) is $dist(\vec{u}, \vec{v}) = \|\vec{u} - \vec{v}\|$. See Figure 4 on page 333.

On page 333:
$$[dist(u,v)]^2 = \|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2 \vec{u} \cdot \vec{v}.$$

 $[dist(u,-v)]^2 = \|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2 \vec{u} \cdot \vec{v}.$

If $\vec{u} \perp \vec{v}$, then $\vec{u} \cdot \vec{v} = 0$, and $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$. This is the **Pythagorean Theorem**. See page 334. This is true in any dimension, including dimensions we can't visualize (R^4 and higher). In R^2 and R^3 , $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta$ where θ is angle between \vec{u} and \vec{v} . See Figure on page 335. We will prove two simple but extremely useful properties in class. These are true in any dimension:

 $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$ The size of the sum \le the sum of the sizes. This is the Triangle Inequality.

Next, given a vector space W (a collection of vectors) from \mathbb{R}^n , there is another vector space (another collection of vectors), also from \mathbb{R}^n , that is orthogonal to W.

Example 4: $W = span\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}$. So W is a subspace of vectors in \mathbb{R}^3 , since W is the

collection of all vectors than are linear combinations) of $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$, which come from R^3 .

What is the dimension of W? **2**, since there are **2** linearly independent vectors in the basis for W. What do you think W looks like? W would be a **2**-dimensional object that exists (sometimes we say "lives") in R^3 . So W is a plane which passes through the origin.

So let's find W^{\perp} , the collection of all vectors that are orthogonal \perp to all of the vectors in W. **Vector space** W^{\perp} is called the <u>orthogonal complement</u> of W. (One meaning of the word "complement" is "the part left over" or "the other part". For example, the complement of/to the ladies in class would be the men in class.) A vector is orthogonal to all vectors in W if and only if it is orthogonal to each vector in the basis of W. Let's show this in class.

So
$$W^{\perp}$$
 consists of all vectors $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ for which

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1x_1 + 2x_2 + 3x_3 = 0 \text{ and } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 4x_1 + 5x_2 + 6x_3 = 0$$
That is,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Then

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \stackrel{0}{\circ} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix} \stackrel{0}{\circ} \stackrel{x_1}{\circ} \stackrel{x_2}{\circ} \stackrel{x_3}{\circ} = \begin{bmatrix} x_3 \\ -2x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}.$$

So W^{\perp} consists of all multiples of the vector $\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, a 1-dimensional vector space (a line that pass through the origin).

You can verify that $\begin{bmatrix} 1\\-2\\1 \end{bmatrix} \perp \text{ both } \begin{bmatrix} 1\\2\\3 \end{bmatrix} \text{ and } \begin{bmatrix} 4\\5\\6 \end{bmatrix}.$

If *W* is a subspace of \mathbb{R}^n , then dim $W + \dim W^{\perp} = n$. In example above, we had 2 + 1 = 3. See Book Figure 7 on page 334 for a picture of this.

Example 5: Let
$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$
, and let $W = Col A = span \left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \right\}$.
Since by definition $\left\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} \right\}$ generates/spans W , then W^{\perp} consists of all of the vectors
 $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ that are orthogonal to these three vectors:
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1x_1 + 2x_2 + 3x_3 = 0$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 4x_1 + 5x_2 + 6x_3 = 0$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 7x_1 + 8x_2 + 9x_3 = 0$
 $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = 7x_1 + 8x_2 + 9x_3 = 0$

So
$$W^{\perp}$$
 consists of all multiples of $\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$. Notice that $\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \perp$ each column of A .
We had already seen in Example 4 that $\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$ is orthogonal to $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and $\begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix}$, so any vector built out of them, including $\begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix} = -1 \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} + 2 \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix}$, will also be orthogonal to $\begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$.

In the above example,

$$Col A = span\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\} = span\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\}.$$

Note: In the above example, the vectors \vec{x} that are $\perp W$ are the same vectors in the null space of A^T . That is,

$$(Col A)^{\perp} = Nul A^{T}$$

and similarly (replacing A^T with A and A with A^T) we have

$$(Col A^T)^{\perp} = (Row A)^{\perp} = Nul A$$

This is Theorem 3 on page 335. This seems like kind of a strange result, but it's pretty straightforward if you think (slowly) about it.

Two cases: if $\theta < 90^\circ$ or if $\theta > 90^\circ$ (if $\theta = 90^\circ$, we have the Pythagorean Theorem) Example 6: $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Note that $\|\vec{u}\| = \sqrt{5} \approx 2.24$ and $\|\vec{v}\| = \sqrt{10} \approx 3.16$. $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2\vec{u} \cdot \vec{v} = 5 + 10 + 2(5) = 25$, so $\|\vec{u} + \vec{v}\|^2 = 5$.

(Compare this to using the Pythagorean Theorem to see that the size of vector $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is 5.)

$$\cos\theta = \frac{\vec{u}\cdot\vec{v}}{\|\vec{u}\|\|\vec{v}\|} = \frac{5}{(\sqrt{5})(\sqrt{10})} = \frac{5}{\sqrt{50}} = \frac{\sqrt{2}}{2} \Rightarrow \theta = \cos^{-1}\left(\frac{\sqrt{2}}{2}\right) = 45^{\circ} \text{ is the angle between } \begin{bmatrix} 2\\1 \end{bmatrix} \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix}.$$

In general, if $\theta < 90^\circ$, then $\cos \theta > 0$ which means $\vec{u} \cdot \vec{v} > 0$, so $\|\vec{u} + \vec{v}\|^2 > \|\vec{u}\|^2 + \|\vec{v}\|^2$. (Notice that for the above example we have $5^2 > (\sqrt{5})^2 + (\sqrt{10})^2$.)

The formula $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 + 2 \vec{u} \cdot \vec{v}$ is most useful for R^3 as a theoretical result.