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Math 260 Section 5.8 
 
Most important ideas: 

• What happens if we repeatedly multiply a vector by a matrix?  How to explain this in 
terms of the eigenvalues and eigenvectors of that matrix?  (We’ve seen this already.) 

• The Power Method and Inverse Power Method for estimating the largest and smallest 
eigenvalues and their corresponding eigenvectors. 

 
First, if 𝑨𝒗⃗⃗ = 𝝀𝒗⃗⃗ , then (𝒄𝑨)𝒗⃗⃗ = 𝒄(𝑨𝒗⃗⃗ ) = 𝒄(𝝀𝒗⃗⃗ ) = (𝒄𝝀)𝒗⃗⃗ .  That is, 𝒄𝑨 has the same 
eigenvectors as 𝑨 but with eigenvalues multiplied by 𝒄. 

Example:  [
2 3
1 4

] [
1
1
] = [

5
5
] = 5 [

1
1
]  and [

14 21
7 28

] [
1
1
] = [

35
35

] = 35 [
1
1
]. 

Next, recall that if 𝑨𝒗⃗⃗ = 𝝀𝒗⃗⃗   then  𝐴2𝑣 = 𝐴(𝐴𝑣 ) = 𝐴(𝜆𝑣 ) = 𝜆(𝐴𝑣 ) = 𝜆(𝜆𝑣 ) = 𝜆2𝑣 , and in 

general  𝑨𝒌𝒗⃗⃗ = 𝝀𝒌𝒗⃗⃗   (including for 𝜆 = −1:  𝐴−1𝑣 =
1

𝜆
𝑣  ). 

Example:  [
2 3
1 4

]
2

[
1
1
] = [

2 3
1 4

] [
2 3
1 4

] [
1
1
] = [

2 3
1 4

] [
5
5
] = [

25
25

] = 52 [
1
1
]. 

Example:  Where  [
2 3
1 4

]
−1

= [
4/5 −3/5

−1/5 2/5
],  we have [

4/5 −3/5
−1/5 2/5

] [
1
1
] = [

1/5
1/5

] = 1/5 [
1
1
]. 

Second, recall that if 𝒏 × 𝒏 matrix 𝑨 has a complete (linearly independent) set of 
eigenvectors  𝒗⃗⃗ 𝟏, 𝒗⃗⃗ 𝟐, … , 𝒗⃗⃗ 𝒏  which form a basis for 𝑹𝒏, then for any vector 𝒙⃗⃗ ∈ 𝑹𝒏, 

𝒙⃗⃗ = 𝒄𝟏𝒗⃗⃗ 𝟏 + 𝒄𝟐𝒗⃗⃗ 𝟐 + ⋯+ 𝒄𝒏𝒗⃗⃗ 𝒏 

and 

𝑨𝒌𝒙⃗⃗ = 𝑨𝒌(𝒄𝟏𝒗⃗⃗ 𝟏 + 𝒄𝟐𝒗⃗⃗ 𝟐 + ⋯+ 𝒄𝒏𝒗⃗⃗ 𝒏) = 𝑨𝒌𝒄𝟏𝒗⃗⃗ 𝟏 + 𝑨𝒌𝒄𝟐𝒗⃗⃗ 𝟐 + ⋯+ 𝑨𝒌𝒄𝒏𝒗⃗⃗ 𝒏 

                                                                      = 𝝀𝟏
𝒌 𝒄𝟏𝒗⃗⃗ 𝟏 + 𝝀𝟐

𝒌 𝒄𝟐𝒗⃗⃗ 𝟐 + ⋯+ 𝝀𝒏
𝒌 𝒄𝒏𝒗⃗⃗ 𝒏 

Example:  Suppose 𝐴 = 𝑃𝐷𝑃−1 where  

𝑃 = [
1 1 1
2 0 −1
1 −1 1

] ,  𝐷 = [
1 0 0
0 . 5 0
0 0 −. 8

]   ⇒    𝐴 = [
. 15 . 60 −.35
. 60 . 40 . 60

−.35 . 60 . 15
] 

Eigenvectors:     [
1
2
1
] , [

1
0

−1
] , [

1
−1

1
] 

Eigenvalues:        1,       .5,   − .8       

  



2 
 

 

We’ll now use the fact that  𝐴𝑘𝑥 = 𝜆1
𝑘 𝑐1𝑣 1 + 𝜆2

𝑘 𝑐2𝑣 2 + ⋯+ 𝜆𝑛
𝑘  𝑐𝑛𝑣 𝑛. 

 

Suppose  𝑥 = [
5
2
9
] = 3 [

1
2
1
] + (−2) [

1
0

−1
] + 4 [

1
−1

1
] = [

3
6
3
] + [

−2
0
2
] + [

4
−4

4
].  

What happens if we repeatedly multiply  𝑥   by 𝐴?  

𝑨𝒙⃗⃗     =  (𝟏)      [
𝟑
𝟔
𝟑
] + (. 𝟓)     [

−𝟐
𝟎
𝟐
] + (−. 𝟖)      [

𝟒
−𝟒

𝟒
] = [

−𝟏. 𝟐
𝟗. 𝟐
𝟎. 𝟖

].  

𝑨𝟐𝒙⃗⃗  =   (𝟏)𝟐     [
𝟑
𝟔
𝟑
] + (. 𝟓)𝟐     [

−𝟐
𝟎
𝟐
] + (−. 𝟖)𝟐    [

𝟒
−𝟒

𝟒
] = [

𝟓. 𝟎𝟔
𝟑. 𝟒𝟒
𝟔. 𝟎𝟔

].  

𝑨𝟑𝒙⃗⃗   =  (𝟏)𝟑     [
𝟑
𝟔
𝟑
] + (. 𝟓)𝟑     [

−𝟐
𝟎
𝟐
] + (−. 𝟖)𝟑    [

𝟒
−𝟒

𝟒
] = [

𝟎. 𝟕𝟎𝟐
𝟖. 𝟎𝟒𝟖
𝟏. 𝟐𝟎𝟐

].  

𝑨𝟏𝟎𝒙⃗⃗  = (𝟏)𝟏𝟎   [
𝟑
𝟔
𝟑
] + (. 𝟓)𝟏𝟎   [

−𝟐
𝟎
𝟐
] + (−. 𝟖)𝟏𝟎   [

𝟒
−𝟒

𝟒
] = [

𝟑. 𝟒𝟐𝟕𝟓𝟒
𝟓. 𝟓𝟕𝟎𝟓𝟎
𝟑. 𝟒𝟑𝟏𝟒𝟓

].  

𝑨𝟏𝟎𝟎𝒙⃗⃗ = (𝟏)𝟏𝟎𝟎 [
𝟑
𝟔
𝟑
] + (. 𝟓)𝟏𝟎𝟎 [

−𝟐
𝟎
𝟐
] + (−. 𝟖)𝟏𝟎𝟎 [

𝟒
−𝟒

𝟒
] ≈ [

𝟑
𝟔
𝟑
].  

𝑨∞𝒙⃗⃗    = (𝟏)∞    [
𝟑
𝟔
𝟑
] + (. 𝟓)∞   [

−𝟐
𝟎
𝟐
] + (−. 𝟖)∞    [

𝟒
−𝟒

𝟒
] = [

𝟑
𝟔
𝟑
].  

Observation:  As we repeatedly multiply the vector  𝑥   by  𝐴 , the part of  𝑥   that comes from 

the eigenvectors corresponding to the  < 1  eigenvalues of 0.5 and −0.8 disappear (they are 

“destroyed”), while the part of  𝑥   that comes from the eigenvector corresponding to the 

largest (the “dominant”) eigenvalue 1 is what remains.   

Next, suppose 𝐴 were some multiple of the  𝐴  we created above?  Say  𝐴 = [
1.5 6.0 −3.5
6.0 4.0 6.0

−3.5 6.0 1.5
].   

This 𝐴 has the same eigenvectors as the 𝐴 above but with eigenvalues that are 10 times the 

eigenvalues as 𝐴 above, so eigenvalues of  10,  5 , −8 . 
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For the same  𝑥 = [
5
2
9
] = [

3
6
3
] + [

−2
0
2
] + [

4
−4

4
]  as above we have 

𝑨𝒙⃗⃗   =    (𝟏𝟎)  [
𝟑
𝟔
𝟑
] +  (𝟓)  [

−𝟐
𝟎
𝟐
] +  (−𝟖)  [

𝟒
−𝟒

𝟒
] = [

−𝟏𝟐
𝟗𝟐
𝟖
].  

𝑨𝟐𝒙⃗⃗ =    (𝟏𝟎)𝟐 [
𝟑
𝟔
𝟑
] +   (𝟓)𝟐 [

−𝟐
𝟎
𝟐
] +   (−𝟖)𝟐 [

𝟒
−𝟒

𝟒
] = [

𝟓𝟎𝟔
𝟑𝟒𝟒
𝟔𝟎𝟔

].  

𝑨𝟐𝟎𝒙⃗⃗ = (𝟏𝟎)𝟐𝟎 [
𝟑
𝟔
𝟑
] + (𝟓)𝟐𝟎 [

−𝟐
𝟎
𝟐
] + (−𝟖)𝟐𝟎 [

𝟒
−𝟒

𝟒
] ≈ [

𝟑. 𝟎𝟓
𝟓. 𝟗𝟓
𝟑. 𝟎𝟓

] × 𝟏𝟎𝟐𝟎.  

And so on.  We see that once again the term that is gradually starting to dominate the other 
two terms is the term (the eigenvector) that corresponds to the largest eigenvalue. 

The resulting vector is starting to become large, really large—too large—so after each 
multiplication let’s divide the new vector by the largest value in the vector.  For  𝑥 0  we’ll again 
use  ( 5, 2, 9).  Note:  𝜇  is a Greek  m  (perhaps standing for max?).  The results: 
 

𝑘 0 1 2 10 20 30 100 

𝑥 𝑘 [
5
2
9
] [

−0.1304
1.0000
0.0870

] [
0.8350
0.5677
1.0000

] [
0.6153
1.0000
0.6160

] [
0.5116
1.0000
0.5116

] [
0.5012
1.0000
0.5012

] [
0.5000
1.0000
0.5000

] 

𝑥 𝑘+1 = 𝐴𝑥 𝑘 [
−12

92
8
] [

5.5000
3.7391
6.5870

] [
1.1584

13.2805
1.9835

] [
4.7669

11.3878
4.7704

] [
4.9768

10.1394
4.9768

] [
4.9975

10.0149
4.9975

] [
5.0000

10.0000
5.0000

] 

𝜇𝑘 = max |𝑥 𝑘+1| 92 6.5870 13.2805 11.3878 10.1394 10.0149 10.0000 

 
In a bit more detail:   

𝒙⃗⃗ 𝟎 = [   
𝟓
𝟐
𝟗
],               𝑨𝒙⃗⃗ 𝟎 = [

−𝟏𝟐
𝟗𝟐
𝟖
]           which we divide by 92 to get… 

𝒙⃗⃗ 𝟏 = [
−𝟎. 𝟏𝟑𝟎𝟒

𝟏. 𝟎𝟎𝟎𝟎
𝟎. 𝟎𝟖𝟕𝟎

],  𝑨𝒙⃗⃗ 𝟏 = [
   𝟓. 𝟓𝟎𝟎𝟎
𝟑. 𝟕𝟑𝟗𝟏
𝟔. 𝟓𝟖𝟕𝟎

]  which we divide by 6.5870 to get… 

𝒙⃗⃗ 𝟐 = [   
𝟎. 𝟖𝟑𝟓𝟎
𝟎. 𝟓𝟔𝟕𝟕
𝟏. 𝟎𝟎𝟎𝟎

],  𝑨𝒙⃗⃗ 𝟐 = [
   𝟏. 𝟏𝟓𝟖𝟒
𝟏𝟑. 𝟐𝟖𝟎𝟓
𝟏. 𝟗𝟖𝟑𝟓

]  which we divide by 13.2805…  and so on… 

The above is called the Power Method for estimating the dominant (i.e. largest in size, whether 
positive or negative) eigenvalue and corresponding eigenvector.  See page 321. 
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Let’s try the Power Method on another (sort of random) matrix, say  𝐴 = [
14 −1 −6
2 5 0
10 −1 −2

].   

𝑘 0 10 20 30 40 

𝑥 𝑘 [        ] [        ] [        ] [        ] [        ] 

𝑥 𝑘+1 = 𝐴𝑥 𝑘 [        ] [        ] [        ] [        ] [        ] 

𝜇𝑘 = 

max |𝑥 𝑘+1| 
     

So we estimate the largest eigenvalue of  𝑨  is _____ with corresponding eigenvector  𝒗⃗⃗ = [       ] . 

If we do the same process using  𝑨−𝟏,  then we will find the largest eigenvalue (and its 

eigenvector) of  𝑨−𝟏, which is the smallest eigenvalue of  𝑨,  since  𝑨𝒗⃗⃗ = 𝝀𝒗⃗⃗  ⇒  𝑨−𝟏𝒗⃗⃗ =
𝟏

𝝀
𝒗⃗⃗ . 

𝑘 0 10 20 30 40 

𝑥 𝑘 [        ] [        ] [        ] [        ] [        ] 

𝑥 𝑘+1 = 𝐴−1𝑥 𝑘 [        ] [        ] [        ] [        ] [        ] 

𝜇𝑘 = 

max |𝑥 𝑘+1| 
     

On page 323 the book gives an algorithm (optional—we’ll not cover it in this class) for finding 
the eigenvalue closest to any value  𝛼,  where you can choose what  𝛼  is. 

The above is actually how eigenvalues are computed for larger than 3 x 3 matrices, since 
determinants for large matrices are horrendously difficult (i.e. time consuming) to compute. 

By the way, using the online eigenvalue/eigenvector finder, 
the three eigenvalues and eigenvectors of  𝐴  above are: 


