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Math 260 Section 5.7 
 
Most important ideas: 

x Solutions to continuous dynamical system initial value problems. 
x Change of variables using eigenvectors and eigenvalues to decouple a system of linear equations. 
x What 𝑒  is for a given matrix  𝐴  and why we care. 
x Complex eigenvalues and eigenvectors and their use in solutions to differential equations. 
x A comparison of discrete and continuous dynamical systems. 

 
First, an example of change of variables, in order to make a more difficult problem into a simpler, 
solveable problem. 
Recall  ∫ cos 𝑥  𝑑𝑥 = sin 𝑥   So how to find ∫ √sin 𝑥  cos 𝑥  𝑑𝑥? 
Let  𝒖 = 𝐬𝐢𝐧 𝒙, then  𝒅𝒖 = 𝐜𝐨𝐬 𝒙  𝒅𝒙, and 

න √𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙  𝒅𝒙 = න √𝒖 𝒅𝒖 = න 𝒖𝟏/𝟐 𝒅𝒖 =
𝒖𝟑/𝟐

𝟑/𝟐
=

𝟐
𝟑

 (𝐬𝐢𝐧 𝒙)𝟑/𝟐 

Now a different topic:  What does it mean for one quantity to be a function of another quantity? 

Sometimes the relationship between two quantities (that is, how one quantity depends on 
another) is described by (1) how one quantity changes relative to the other, along with                     
(2) some “initial condition” as a starting value. 

For example, suppose you know that the population in Malibu is increasing at a rate of 3% per 
year and is currently (i.e. in the year 2018) 10,000.  That is,   

𝑑𝑝
𝑑𝑡

= .03𝑝 ,     𝑝(0) = 10,000 

where 𝑝(𝑡) is the population  𝑡  years after 2018.  Can we find a formula (a function) which tells 
us what the population is in any year (for any time 𝑡)? 

Rewrite  ௗ
ௗ௧

= .03𝑝  as  ௗ


= .03𝑑𝑡,  integrate  ∫ ௗ


= ∫. 03𝑑𝑡  to get  𝑙𝑛 𝑝 = .03𝑡 + 𝐶, and then 

solve for population  𝑝  as a function of time  𝑡 :  

𝑝 = 𝑒.ଷ௧ା = 𝑒𝑒.ଷ௧  and since  𝐶  is just some unknown constant,  so is  𝑒. 

So we have  𝑝(𝑡) = 𝐶𝑒.ଷ௧.  You can check that  ௗ
ௗ௧

= .03𝑝.   

Finally, use the initial condition  𝑝(0) = 10000  to find the constant 𝑝(0) = 𝐶𝑒.ଷ() = 𝐶 = 10000.   

So we have found that the solution to the initial value problem   

𝒅𝒑
𝒅𝒕

=. 𝟎𝟑𝒑 ,   𝒑(𝟎) = 𝟏𝟎, 𝟎𝟎𝟎 

is   

𝒑(𝒕) = 𝟏𝟎, 𝟎𝟎𝟎𝒆.𝟎𝟑𝒕 . 
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In general the solution to the initial value problem   𝒅𝒑
𝒅𝒕

= 𝝀𝒑, 𝒑(𝟎) = 𝒑𝟎  is  𝒑(𝒕) = 𝒑𝟎𝒆𝝀𝒕 . 
 
Of course it doesn’t really matter what we call the variables (the letters). 

𝑑𝑦
𝑑𝑡

= 𝜆𝑦 ,     𝑦(0) = 𝑦    ⇒     𝑦(𝑡) = 𝑦𝑒ఒ௧ 

or                                           
𝑑𝑥
𝑑𝑡

= 𝜆𝑥 ,     𝑥(0) = 𝑥    ⇒     𝑥(𝑡) = 𝑥𝑒ఒ௧ 

We will use  𝑥  or  𝑝  to represent the (unknown) function of time  𝑡  in Section 5.7. 
 
Suppose we have more than one population.  Say we have two populations  𝑝ଵ  and  𝑝ଶ, and that: 

   The solution to  𝒅𝒑𝟏
𝒅𝒕

=. 𝟎𝟑 𝒑𝟏 ,     𝒑𝟏(𝟎) = 𝟏𝟎, 𝟎𝟎𝟎     is    𝒑𝟏(𝒕) = 𝟏𝟎, 𝟎𝟎𝟎𝒆.𝟎𝟑𝒕 

   The solution to  𝒅𝒑𝟐
𝒅𝒕

=. 𝟎𝟓 𝒑𝟐 ,     𝒑𝟐(𝟎) = 𝟕𝟓, 𝟎𝟎𝟎     is    𝒑𝟐(𝒕) = 𝟕𝟓, 𝟎𝟎𝟎𝒆.𝟎𝟓𝒕 

We can write this as a single equation: 


𝒅𝒑𝟏
𝒅𝒕

𝒅𝒑𝟐
𝒅𝒕

 = ቈ
. 𝟎𝟑 𝒑𝟏

. 𝟎𝟓 𝒑𝟐
 = ቂ. 𝟎𝟑 𝟎

𝟎 . 𝟎𝟓ቃ ቂ
𝒑𝟏
𝒑𝟐

ቃ,     𝒑𝟏(𝟎)
𝒑𝟐(𝟎)൨ = ቂ𝟏𝟎, 𝟎𝟎𝟎

𝟕𝟓, 𝟎𝟎𝟎ቃ     ⇒      𝒑𝟏(𝒕)
𝒑𝟐(𝒕)൨ = 𝟏𝟎, 𝟎𝟎𝟎𝒆.𝟎𝟑𝒕

𝟕𝟓, 𝟎𝟎𝟎𝒆.𝟎𝟓𝒕൨  

That is, in general, for two populations  �⃗�(𝑡) = 𝑝ଵ(𝑡)
𝑝ଶ(𝑡)൨: 

 The solution to   𝒅𝒑ሬሬ⃗
𝒅𝒕

= 𝝀𝟏 𝟎
𝟎 𝝀𝟐

൨ 𝒑ሬሬ⃗  ,     𝒑ሬሬ⃗ (𝟎) = 𝒑𝟏(𝟎)
𝒑𝟐(𝟎)൨ = ቂ

𝒄𝟏
𝒄𝟐

ቃ   is   𝒑ሬሬ⃗ (𝒕) = ቈ𝒄𝟏𝒆𝝀𝟏𝒕

𝒄𝟐𝒆𝝀𝟐𝒕
 . 

Or using  �⃗�  as the function and  𝑑ଵ, 𝑑ଶ as the initial (i.e. 𝑡 = 0) values of  𝑦ଵ(𝑡), 𝑦ଶ(𝑡) : 

  The solution to   𝒅𝒚ሬሬ⃗
𝒅𝒕

= 𝝀𝟏 𝟎
𝟎 𝝀𝟐

൨ 𝒚ሬሬ⃗  ,     𝒚ሬሬ⃗ (𝟎) = 𝒅𝟏
𝒅𝟐

൨   is   𝒚ሬሬ⃗ (𝒕) = ቈ𝒅𝟏𝒆𝝀𝟏𝒕

𝒅𝟐𝒆𝝀𝟐𝒕
 . 

It’s easy to see how this would generalize to larger than 2 × 2 linear systems of differential equations.  
 
So what the heck do you do if you are trying to solve the problem (find  �⃗�(𝑡)) for 

𝑑�⃗�
𝑑𝑡

= 𝐴�⃗� ,     �⃗� = �⃗�(0) = ቂ
𝑐ଵ
𝑐ଶ

ቃ     

where 𝐴 is not diagonal?  How do we change this more difficult problem into a simpler one?     

With a change of variables.  What sort of change?   

Thank goodness once again for eigenvectors and eigenvalues.  
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Suppose 𝐴 = 𝑃𝐷𝑃ିଵ where the columns of 𝑃 are the (linearly independent) eigenvectors of 𝐴 
and 𝐷 contains the eigenvalues of 𝐴. 
 

Then we have 
𝒅𝒙ሬሬ⃗
𝒅𝒕

= 𝑨𝒙ሬሬ⃗ = 𝑷𝑫𝑷ି𝟏 𝒙ሬሬ⃗  ,     𝒙ሬሬ⃗ (𝟎) = ቂ
𝒄𝟏
𝒄𝟐

ቃ . 

Multiplying everything on the left by  𝑃ିଵ  results in 

𝑃ିଵ  
𝑑�⃗�
𝑑𝑡

= 𝐷𝑃ିଵ�⃗� ,     𝑃ିଵ �⃗�(0) = 𝑃ିଵ ቂ
𝑐ଵ
𝑐ଶ

ቃ     

Here’s our change of variable:  Let  𝒚ሬሬ⃗ = 𝑷ି𝟏𝒙ሬሬ⃗   (so  𝑷 𝒚ሬሬ⃗ = 𝒙ሬሬ⃗ ) 

Then  ௗ௬ሬ⃗
ௗ௧

= ௗ
ௗ௧

(𝑃ିଵ �⃗�) = 𝑃ିଵ  ௗ௫⃗
ௗ௧

  (since 𝑃ିଵ is a matrix of constant values) so we have 

𝑑�⃗�
𝑑𝑡

= 𝐷�⃗� = 𝜆ଵ 0
0 𝜆ଶ

൨ �⃗�   ,    𝑑ଵ
𝑑ଶ

൨ =  𝒚ሬሬ⃗ (𝟎) = 𝑷ି𝟏 𝒙ሬሬ⃗ (𝟎) = 𝑃ିଵ �⃗� = 𝑃ିଵ ቂ
𝑐ଵ
𝑐ଶ

ቃ . 

It’s easy to find the solution for this, as we saw on page 2: 

𝒅𝒚ሬሬ⃗
𝒅𝒕

= 𝝀𝟏 𝟎
𝟎 𝝀𝟐

൨ 𝒚ሬሬ⃗  ,     𝒚ሬሬ⃗ (𝟎) = 𝒅𝟏
𝒅𝟐

൨     ⇒      𝒚ሬሬ⃗ (𝒕) = 
𝒚𝟏(𝒕)
𝒚𝟐(𝒕)൨ = ቈ𝒅𝟏 𝒆𝝀𝟏𝒕

𝒅𝟐 𝒆𝝀𝟐𝒕 . 

Where 𝑃 = [ �⃗�ଵ  �⃗�ଶ ], since �⃗� = 𝑃ିଵ�⃗�, we have (changing variables back from  �⃗�  to  �⃗�)  

𝒙ሬሬ⃗ (𝒕) = 𝑷 𝒚ሬሬ⃗ (𝒕) = [ 𝒗ሬሬ⃗ 𝟏  𝒗ሬሬ⃗ 𝟐 ] 
𝒚𝟏(𝒕)
𝒚𝟐(𝒕)൨ = [ 𝒗ሬሬ⃗ 𝟏  𝒗ሬሬ⃗ 𝟐 ] ቈ𝒅𝟏 𝒆𝝀𝟏𝒕

𝒅𝟐 𝒆𝝀𝟐𝒕 = 𝒅𝟏 𝒆𝝀𝟏𝒕 𝒗ሬሬ⃗ 𝟏 + 𝒅𝟐 𝒆𝝀𝟐𝒕 𝒗ሬሬ⃗ 𝟐. 

The above is described as “decoupling” (unjoining of) the system of equations. 

Example:      
ௗ௫భ
ௗ௧ 

= −𝑥ଵ + 10𝑥ଶ
ௗ௫మ
ௗ௧ 

=  5𝑥ଵ +   4𝑥ଶ
      i. e.   ௗ௫⃗

ௗ௧
= 𝐴𝑥   where   𝐴 = ቂ−1 10

   5  4 ቃ.        

The eigenvectors/eigenvalues of  𝐴  are  �⃗�ଵ = ቂ   2
−1ቃ , �⃗�ଶ = ቂ1

1ቃ  and  𝜆ଵ = −6, 𝜆ଶ = 9. 

So                             𝒙ሬሬ⃗ (𝒕) = 𝒅𝟏 𝒆𝝀𝟏𝒕 𝒗ሬሬ⃗ 𝟏 + 𝒅𝟐 𝒆𝝀𝟐𝒕 𝒗ሬሬ⃗ 𝟐 = 𝒅𝟏 𝒆ି𝟔𝒕  ቂ 𝟐
−𝟏ቃ + 𝒅𝟐 𝒆𝟗𝒕 ቂ𝟏

𝟏ቃ . 

Now to find  𝑑ଵ  and  𝑑ଶ.  Suppose that  �⃗�(𝟎) = ቂ𝟓
𝟖ቃ,  then (as we already saw above) we have 

ቂ𝟓
𝟖ቃ = �⃗�(𝟎) = 𝑑ଵ 𝑒ି(𝟎) ቂ 2

−1ቃ + 𝑑ଶ 𝑒ଽ(𝟎) ቂ1
1ቃ = ቂ 2 1

−1 1ቃ 𝑑ଵ
𝑑ଶ

൨   ⇒   𝒅𝟏
𝒅𝟐

൨ =  ቂ 𝟐 𝟏
−𝟏 𝟏ቃ

ି𝟏
ቂ𝟓
𝟖ቃ = ቂ−𝟏

𝟕ቃ 

So                              𝒙ሬሬ⃗ (𝒕) = −𝟏𝒆ି𝟔𝒕 ቂ 𝟐
−𝟏ቃ + 𝟕𝒆𝟗𝒕 ቂ𝟏

𝟏ቃ = −𝟐𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕

      𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕൨ 

That is,  𝒙𝟏(𝒕) = −𝟐𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕   and    𝒙𝟐(𝒕) =  𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕 . 

𝐂𝐡𝐞𝐜𝐤:  𝒅𝒙𝟏
𝒅𝒕 

=  𝟏𝟐𝒆ି𝟔𝒕 + 𝟔𝟑𝒆𝟗𝒕 = −(−𝟐𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕) + 𝟏𝟎(𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕)  9 

                 𝒅𝒙𝟐
𝒅𝒕 

= −𝟔𝒆ି𝟔𝒕 + 𝟔𝟑𝒆𝟗𝒕 =  𝟓(−𝟐𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕) +   𝟒(𝒆ି𝟔𝒕 + 𝟕𝒆𝟗𝒕)   9 
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By the way, now is a good time to (re-)read Section 5.6, p. 306, about change of variable.  In 5.6 
this change of variable idea was not really needed in order to solve the discrete time problems, 
but in 5.7 with continuous time problems it is necessary. 
 
Another (really cool) view of all of this… 
 
First, recall the Taylor Series  𝑒௫ = 1 +   𝑥  +   ଵ

ଶ!
 𝑥ଶ   +   ଵ

ଷ!
 𝑥ଷ   + ⋯ 

It turns out that the same is true for a matrix:   

𝑒 = 𝐼 + 𝐴 +
1
2!

𝐴ଶ +
1
3!

𝐴ଷ + ⋯ 

This would be tough to compute (especially the infinite  ⋯  part) unless we have a way to easily 
compute  𝐴  for any  𝑘.  As usual, it’s eigenvectors and eigenvalues that makes this possible. 
 

Recall:  if 𝐴 = 𝑃𝐷𝑃ିଵ, then 𝐴 = 𝑃𝐷𝑃ିଵ = 𝑃 ቈ𝜆ଵ
 0

0 𝜆ଶ
 𝑃ିଵ, and we have 

   𝒆𝑨𝒕  =  𝑰           +         𝑨𝒕         +    𝟏
𝟐!

    (𝑨𝒕)𝟐            +    𝟏
𝟑!

 (𝑨𝒕)𝟑                 +   ⋯  
 

             = 𝑷 𝑷ି𝟏    +    𝑷 𝑫𝒕 𝑷ି𝟏   +   𝟏
𝟐!

 𝑷 (𝑫𝒕)𝟐 𝑷ି𝟏 + 𝟏
𝟑!

 𝑷 (𝑫𝒕)𝟑 𝑷ି𝟏   +   ⋯    
 
             = 𝑷 ቂ  𝑰  +    (𝑫𝒕)  +   𝟏

𝟐!
 (𝑫𝒕)𝟐   +   𝟏

𝟑!
 (𝑫𝒕)𝟑   +   ⋯   ቃ 𝑷ି𝟏 

 

             = 𝑷 ቈ   ቂ𝟏 𝟎
𝟎 𝟏ቃ   +    𝝀𝟏𝒕 𝟎

  𝟎 𝝀𝟐𝒕൨   +  𝟏
𝟐!

ቈ
(𝝀𝟏𝒕)𝟐   𝟎

𝟎 (𝝀𝟐𝒕)𝟐   +    𝟏
𝟑!

ቈ
(𝝀𝟏𝒕)𝟑   𝟎

𝟎 (𝝀𝟐𝒕)𝟑   +   ⋯    𝑷ି𝟏 

 

             = 𝑷  
𝟏 + 𝝀𝟏𝒕 + 𝟏

𝟐!
(𝝀𝟏𝒕)𝟐 + 𝟏

𝟑!
(𝝀𝟏𝒕)𝟑 + ⋯ 𝟎

𝟎 𝟏 +  𝝀𝟐𝒕 + 𝟏
𝟐!

(𝝀𝟐𝒕)𝟐 + 𝟏
𝟑!

(𝝀𝟑𝒕)𝟑 + ⋯
 𝑷ି𝟏 

 

             = 𝑷  
𝒆𝝀𝟏𝒕  𝟎

  𝟎  𝒆𝝀𝟐𝒕൩   𝑷ି𝟏  

 
And similarly for larger than 2 × 2 matrices.  
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Recall:  the solution to the differential equation (also known as an initial value problem)  

𝒅𝒙
𝒅𝒕

= 𝒂𝒙,   𝒙(𝟎) = 𝒙𝟎 
Is  𝒙(𝒕) = 𝒙𝟎𝒆𝒂𝒕. 
 
Then the solution to the multivariable differential equation 

𝒅𝒙ሬሬ⃗
𝒅𝒕

= 𝑨𝒙ሬሬ⃗ ,   𝒙ሬሬ⃗ (𝟎) = 𝒙ሬሬ⃗ 𝟎 = ቂ
𝒄𝟏
𝒄𝟐

ቃ 
is 
 
 𝒙ሬሬ⃗ (𝒕) = 𝒆𝑨𝒕𝒙ሬሬ⃗ 𝟎   (a matrix times a vector) 
 

          =   𝑷 
𝒆𝝀𝟏𝒕  𝟎

  𝟎  𝒆𝝀𝟐𝒕൩ 𝑷ି𝟏 𝒙ሬሬ⃗ 𝟎                                                                                     

 

          =   [𝒗ሬሬ⃗ 𝟏  𝒗ሬሬ⃗ 𝟐] 
𝒆𝝀𝟏𝒕  𝟎

  𝟎  𝒆𝝀𝟐𝒕൩ 𝒅𝟏
𝒅𝟐

൨                                                                                         

 

          =   [𝒆𝝀𝟏𝒕𝒗ሬሬ⃗ 𝟏   𝒆𝝀𝟐𝒕𝒗ሬሬ⃗ 𝟐]  𝒅𝟏
𝒅𝟐

൨                                                                                               

 
          =    𝒅𝟏 𝒆𝝀𝟏𝒕𝒗ሬሬ⃗ 𝟏 +  𝒅𝟐 𝒆𝝀𝟐𝒕𝒗ሬሬ⃗ 𝟐                                                                          
 

where  𝑑ଵ
𝑑ଶ

൨ = 𝑃ିଵ�⃗�. 

 
(Does the above formula for  �⃗�(𝑡)  look familiar?) 
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In our next example we use the fact  𝒆𝒊𝒃 = 𝐜𝐨𝐬 𝒃 + 𝒊 𝐬𝐢𝐧 𝒃  so  𝒆𝒂ା𝒊𝒃 = 𝒆𝒂𝒆𝒊𝒃 = 𝒆𝒂(𝐜𝐨𝐬 𝒃 + 𝒊 𝐬𝐢𝐧 𝒃).   
 
Example 1:  Predator/prey example (with complex eigenvalues/vectors):  recall  𝑂 = 𝑂𝑤𝑙𝑠, 𝑅 = 𝑅𝑎𝑡𝑠.  

   

𝑑𝑂
𝑑𝑡 

=    .1 𝑂 + .2 𝑅

𝑑𝑅
𝑑𝑡 

= −.2 𝑂 + .1 𝑅
      i. e.   

𝑑�⃗�
𝑑𝑡

= 𝐴�⃗�   where  �⃗� = ቂ𝑂
𝑅ቃ ,   𝐴 = ቂ   .1 . 2

−.2  .1ቃ . 

What do the values of  𝐴  tell us? 

The eigenvectors and eigenvalues of  𝐴  are  ቂ1
𝑖 ቃ, ቂ  1

−𝑖ቃ  and . 1 + .2𝑖, .1 − .2𝑖: 

ቂ   .1 . 2
−.2  .1ቃ ቂ1

𝑖 ቃ = ቂ   .1 + .2𝑖
−.2 + .1𝑖ቃ = (.1 + .2𝑖) ቂ1

𝑖 ቃ    and    ቂ   .1 . 2
−.2  .1ቃ ቂ 1

−𝑖ቃ = ቂ   .1 − .2𝑖
−.2 − .1𝑖ቃ = (.1 − .2𝑖) ቂ 1

−𝑖ቃ 

Then population  𝒑ሬሬ⃗ (𝒕) = 𝒅𝟏𝒆𝝀𝟏𝒕𝒗ሬሬ⃗ 𝟏 + 𝒅𝟐𝒆𝝀𝟐𝒕𝒗ሬሬ⃗ 𝟐 = 𝒅𝟏 ቂ𝟏
𝒊 ቃ 𝒆(.𝟏ା.𝟐𝒊)𝒕 + 𝒅𝟐 ቂ  𝟏

−𝒊ቃ 𝒆(.𝟏ି.𝟐𝒊)𝒕 ,  that is 

𝑂(𝑡) = 𝑑ଵ(1)𝑒(.ଵା.ଶ)௧ + 𝑑ଶ(1)𝑒(.ଵି.ଶ)௧  

           = 𝑒.ଵ௧[𝑑ଵ(cos  .2𝑡 + 𝑖  sin  .2𝑡) + 𝑑ଶ(cos  .2𝑡 − 𝑖  sin  .2𝑡)]  

           = 𝑒.ଵ௧[(𝑑ଵ + 𝑑ଶ) cos  .2𝑡 + (𝑑ଵ − 𝑑ଶ)(𝑖) sin  .2𝑡]   

𝑅(𝑡) = 𝑑ଵ(𝑖)𝑒(.ଵା.ଶ)௧ + 𝑑ଶ(−𝑖)𝑒(.ଵି.ଶ)௧  

           = 𝑒.ଵ௧[𝑑ଵ(𝑖)(cos  .2𝑡 + 𝑖  sin  .2𝑡) + 𝑑ଶ(−𝑖)(cos  .2𝑡 − 𝑖  sin  .2𝑡)]  

           = 𝑒.ଵ௧[(𝑑ଵ − 𝑑ଶ)(𝑖) cos  .2𝑡 − (𝑑ଵ + 𝑑ଶ) sin  .2𝑡]   

So 
𝑶(𝒕) = 𝒆.𝟏𝒕[𝒃𝟏 𝐜𝐨𝐬  . 𝟐𝒕 + 𝒃𝟐 𝐬𝐢𝐧  . 𝟐𝒕] 
𝑹(𝒕) = 𝒆.𝟏𝒕[𝒃𝟐 𝐜𝐨𝐬  . 𝟐𝒕 − 𝒃𝟏 𝐬𝐢𝐧  . 𝟐𝒕] 

where 
𝑏ଵ =    𝑑ଵ + 𝑑ଶ   
𝑏ଶ = 𝑖(𝑑ଵ − 𝑑ଶ) 

Suppose we have initial conditions of:   𝑂(0) = 20, 𝑅(0) = 10 
Then: 

20 = 𝑂(0) = 𝑒[𝑏ଵ cos 0 + 𝑏ଶ sin 0] = 𝑏ଵ 

10 = 𝑅(0) = 𝑒[𝑏ଶ cos 0 − 𝑏ଵ sin 0] = 𝑏ଶ 

So: 
𝑶(𝒕) = 𝒆.𝟏𝒕[𝟐𝟎 𝐜𝐨𝐬  . 𝟐𝒕 + 𝟏𝟎 𝐬𝐢𝐧  . 𝟐𝒕] 

𝑹(𝒕) = 𝒆.𝟏𝒕[𝟏𝟎 𝐜𝐨𝐬  . 𝟐𝒕 − 𝟐𝟎 𝐬𝐢𝐧  . 𝟐𝒕] 
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A bit more generally (but still for this specific type of matrix  𝑨), where 

   

𝒅𝑶
𝒅𝒕 

=    𝒂 𝑶 + 𝒃 𝑹

𝒅𝑹
𝒅𝒕 

= −𝒃 𝑶 + 𝒂 𝑹
      𝐢. 𝐞.   

𝒅𝒑ሬሬ⃗
𝒅𝒕

= 𝑨𝒑ሬሬ⃗    𝐰𝐡𝐞𝐫𝐞  𝒑ሬሬ⃗ = ቂ𝑶
𝑹ቃ ,   𝑨 = ቂ   𝒂 𝒃

−𝒃  𝒂ቃ 

and  𝑶(𝟎) = 𝑶𝟎, 𝑹(𝟎) = 𝑹𝟎, the solution is 

𝑶(𝒕) = 𝒆𝒂𝒕[𝑶𝟎 𝐜𝐨𝐬  𝒃𝒕 + 𝑹𝟎 𝐬𝐢𝐧  𝒃𝒕] 

𝑹(𝒕) = 𝒆𝒂𝒕[𝑹𝟎 𝐜𝐨𝐬  𝒃𝒕 − 𝑶𝟎 𝐬𝐢𝐧  𝒃𝒕] 

 

A few interesting cases, with  𝑂 = 20, 𝑅 = 10.   

 

𝒂 > 𝟎, 𝒃 > 𝟎,  e.g.  𝒂 =. 𝟎𝟏, 𝒃 =. 𝟐 

𝑶(𝒕) = 𝒆.𝟎𝟏𝒕[𝟐𝟎 𝐜𝐨𝐬  . 𝟐𝒕 + 𝟏𝟎 𝐬𝐢𝐧  . 𝟐𝒕]  

𝑹(𝒕) = 𝒆.𝟎𝟏𝒕[𝟏𝟎 𝐜𝐨𝐬  . 𝟐𝒕 − 𝟐𝟎 𝐬𝐢𝐧  . 𝟐𝒕]  

(And what does  𝑎 = .01  mean?) 

 

 

𝒂 = 𝟎, 𝒃 > 𝟎,  e.g.  𝒂 = 𝟎, 𝒃 =. 𝟐 

𝑶(𝒕) = 𝟐𝟎 𝐜𝐨𝐬  . 𝟐𝒕 + 𝟏𝟎 𝐬𝐢𝐧  . 𝟐𝒕  

𝑹(𝒕) = 𝟏𝟎 𝐜𝐨𝐬  . 𝟐𝒕 − 𝟐𝟎 𝐬𝐢𝐧  . 𝟐𝒕  

(And what does  𝑎 = 0  mean?) 

 

 

𝒂 < 𝟎, 𝒃 > 𝟎,  e.g.  𝒂 = −. 𝟎𝟏, 𝒃 =. 𝟐 

𝑶(𝒕) = 𝒆ି.𝟎𝟏𝒕[𝟐𝟎 𝐜𝐨𝐬  . 𝟐𝒕 + 𝟏𝟎 𝐬𝐢𝐧  . 𝟐𝒕]  

𝑹(𝒕) = 𝒆ି.𝟎𝟏𝒕[𝟏𝟎 𝐜𝐨𝐬  . 𝟐𝒕 − 𝟐𝟎 𝐬𝐢𝐧  . 𝟐𝒕]  

(And what does  𝑎 = −.01  mean?) 

 

If  𝑏 < 0, then the predator and the prey have simply swapped roles:  the hunter becomes the 
hunted and conversely.  If  𝑏 = 0  then there is no interaction between owls and rats. 
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Finally, a few thoughts before we compare the discrete and continuous cases. 

First, if  𝑨𝒗ሬሬ⃗ = 𝝀𝒗ሬሬ⃗ , then  (𝑨 − 𝒄𝑰)𝒗ሬሬ⃗ = 𝑨𝒗ሬሬ⃗ − 𝒄𝒗ሬሬ⃗ = (𝝀 − 𝒄)𝒗ሬሬ⃗ .  That is, if  𝝀  is an eigenvalue of  𝑨,  
then  𝝀 − 𝒄  is an eigenvalue of  𝑨 − 𝒄𝑰 and with the same eigenvector  𝒗ሬሬ⃗ . 

Example: 

         𝐴      �⃗�  =      𝜆   �⃗�                   (𝐴 − 𝐼) �⃗�  = (𝜆 − 1)�⃗�  

   ቂ1 6
3 4ቃ ቂ1

1ቃ =     7 ቂ1
1ቃ           ቂ0 6

3 3ቃ ቂ1
1ቃ =     6 ቂ1

1ቃ    

ቂ1 6
3 4ቃ ቂ−2

1ቃ = −2 ቂ−2
1ቃ     ቂ0 6

3 3ቃ ቂ−2
1ቃ = −3 ቂ−2

1ቃ 

Second, a comparison of the discrete and continuous cases for one population which grows at 
2% per year with initial population of  𝑝. 

Discrete:   𝒑𝒌ା𝟏 = 𝟏. 𝟎𝟐 𝒑𝒌 ⇒   𝒑𝒌 = (𝟏. 𝟎𝟐)𝒌 𝒑𝟎 = 𝒑𝟎 (𝟏. 𝟎𝟐)𝒌 

Continuous:          𝒅𝒑
𝒅𝒕

= . 𝟎𝟐 𝒑    ⇒ 𝒑(𝒕) = 𝒆.𝟎𝟐𝒕 𝒑𝟎  (or  𝒑𝟎 𝒆.𝟎𝟐𝒕 ,  if you prefer). 

Third, remember the Taylor Series  𝒆𝒕 = 𝟏 + 𝒕 + 𝒕𝟐

𝟐
+ 𝒕𝟑

𝟑!
+ 𝒕𝟒

𝟒!
+ ⋯   ≈  𝟏 + 𝒕   if  𝑡  is small.   

So, for example,  𝑒.ଶ ≈ 1.02, so  (𝑒.ଶ)௧ ≈ (1.02)௧, i.e.  𝒆𝟏.𝟎𝟐𝒕 ≈ (𝟏. 𝟎𝟐)𝒕. 

Note:  𝑒.ଶ௧  is actually slightly  > (1.02)௧, especially as  𝑡  gets larger.  This is analogous to how if 
you earn 2% interest per year in the bank, 2% continuously compounded interest will result in 
more interest earned than 2% earned once a year.  Indeed,  𝑒.ଶ௧ = (𝑒.ଶ)௧ = 1.0202௧.  So  2% 
continuous growth is like 2.02% growth that is experienced once a year. 

So  𝑒.ଶ௧ ≈ (1 + .02)௧ = (1.02)௧,  and similarly,  𝑒ି.ସଶ௧ ≈ (1 − .42)௧ = 0.58௧.  We’ll see both of 
these in the following example. 
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Discrete Example 2 (Example 1 from Book Section 5.6, as well as Example 1 from Handout 5.6):  

Where  ቂ𝑶
𝑹ቃ

𝟎
= ቂ𝟑𝟓

𝟐𝟗ቃ  and   𝑶𝒌ା𝟏 =           . 𝟓𝑶𝒌+   . 𝟒𝑹𝒌
𝑹𝒌ା𝟏 = −. 𝟏𝟎𝟒𝑶𝒌 + 𝟏. 𝟏𝑹𝒌

,  that is,  ቂ𝑶
𝑹ቃ

𝒌ା𝟏
= ቂ . 𝟓 . 𝟒

−. 𝟏𝟎𝟒 𝟏. 𝟏ቃ ቂ𝑶
𝑹ቃ

𝒌
 . 

Then  ቂ𝑶
𝑹ቃ

𝒌
= 𝒄𝟏(𝟏. 𝟎𝟐)𝒌 ቂ𝟏𝟎

𝟏𝟑ቃ + 𝒄𝟏(. 𝟓𝟖)𝒌 ቂ𝟓
𝟏ቃ  where  ቂ

𝑐ଵ
𝑐ଶ

ቃ = ቂ10 5
13 1ቃ

ିଵ
ቂ35
29ቃ = ቂ2

3ቃ. 

That is,   ቂ𝑶
𝑹ቃ

𝒌
= 𝟐(𝟏. 𝟎𝟐)𝒌 ቂ𝟏𝟎

𝟏𝟑ቃ + 𝟑(. 𝟓𝟖)𝒌 ቂ𝟓
𝟏ቃ = (𝟏. 𝟎𝟐)𝒌 ቂ𝟐𝟎

𝟐𝟔ቃ + (. 𝟓𝟖)𝒌 ቂ𝟏𝟓
𝟑 ቃ . 

where  𝑘  is the (discrete) number of months that have gone by. 

The continuous analog of that example:  

Where  ቂ𝑶
𝑹ቃ

𝟎
= ቂ𝟑𝟓

𝟐𝟗ቃ   and   
𝒅𝑶
𝒅𝒕

=      − . 𝟓 𝑶+   . 𝟒 𝑹
𝒅𝑹
𝒅𝒕

= −. 𝟏𝟎𝟒 𝑶 + 𝟎. 𝟏 𝑹
 ,  that is,  𝒅𝒙ሬሬ⃗

𝒅𝒕
= ቂ−. 𝟓     . 𝟒

−. 𝟏𝟎𝟒 𝟎. 𝟏ቃ 𝒙ሬሬ⃗  , where  �⃗� = ቂ𝑂
𝑅ቃ. 

Then  𝒙ሬሬ⃗ (𝒕) = 
𝑶(𝒕)
𝑹(𝒕)൨ = 𝒅𝟏 𝒆.𝟎𝟐𝒕 ቂ𝟏𝟎

𝟏𝟑ቃ + 𝒅𝟐𝒆ି.𝟒𝟐𝒕 ቂ𝟓
𝟏ቃ   where  𝑑ଵ

𝑑ଶ
൨ = ቂ10 5

13 1ቃ
ିଵ

ቂ35
29ቃ = ቂ2

3ቃ. 

That is,  𝒙ሬሬ⃗ (𝒕) = 
𝑶(𝒕)
𝑹(𝒕)൨ = 𝟐𝒆.𝟎𝟐𝒕 ቂ𝟏𝟎

𝟏𝟑ቃ + 𝟑𝒆ି.𝟒𝟐𝒕 ቂ𝟓
𝟏ቃ = 𝒆.𝟎𝟐𝒕 ቂ𝟐𝟎

𝟐𝟔ቃ + 𝒆ି.𝟒𝟐𝒕 ቂ𝟏𝟓
𝟑 ቃ. 

where  𝑡  is (continuous) amount of time in months that has gone by. 

 


