Math 260 Section 5.7

Most important ideas:
e Solutions to continuous dynamical system initial value problems.

e Change of variables using eigenvectors and eigenvalues to decouple a system of linear equations.

e Whate? isfora given matrix A and why we care.
e Complex eigenvalues and eigenvectors and their use in solutions to differential equations.
e A comparison of discrete and continuous dynamical systems.

First, an example of change of variables, in order to make a more difficult problem into a simpler,

solveable problem.

Recall [ cosx dx =sinx Sohow tofind [Vsinx cosx dx?

Let u = sin x, then du = cos x dx, and
ud/?

2
f\/sinx cosx dx = f\/ﬂduz ful/z du:ﬁ:§ (sin x)3/2

Now a different topic: What does it mean for one quantity to be a function of another quantity?

Sometimes the relationship between two quantities (that is, how one quantity depends on
another) is described by (1) how one quantity changes relative to the other, along with
(2) some “initial condition” as a starting value.

For example, suppose you know that the population in Malibu is increasing at a rate of 3% per
year and is currently (i.e. in the year 2018) 10,000. That s,

d
d—’z = .03p, p(0) = 10,000

where p(t) is the population t years after 2018. Can we find a formula (a function) which tells
us what the population is in any year (for any time t)?

. d d . d
Rewrite d—zz =.03p as f =.03dt, integrate f?p = [.03dt toget Inp =.03t + C, and then
solve for population p as a function of time ¢ :

p = e3¢ = 203t gndsince C is just some unknown constant, sois eC.

So we have p(t) = Ce°3t. You can check that % =.03p.
Finally, use the initial condition p(0) = 10000 to find the constant p(0) = Ce*3(® = ¢ = 10000.

So we have found that the solution to the initial value problem

dp

=, = 03p, p(0) = 10,000

p(t) = 10,000e3¢ .



d

In general the solution to the initial value problem d—’t’ = Ap, p(0) = py is p(t) = pee’t.

Of course it doesn’t really matter what we call the variables (the letters).

dy
= Y@=y = y©O= yoelt
dx

or i Ax, x(0)=x, = x(t)=xe

We will use x or p to represent the (unknown) function of time ¢t in Section 5.7.
Suppose we have more than one population. Say we have two populations p; and p,, and that:
The solution to % =.03p;, p.(0)=10,000 is p,(t) =10,000e°3

The solutionto 2 =.05p,, p,(0) = 75,000 is p,(t) =75,000e"

We can write this as a single equation:

dp,q
ar | _[[03P1 | _ [.03 0 ] pl] p1(0)] _ 10,000] S [p®]_ 10,000e'03t]
dp2 .05 p, 0 .0511p2V’ p2(0) 75,000 p2(t) 75,0006'05t
dt
That is, in general, for two populations p(t) = p1 () :
p2(t)
At

. dp _ [ 0]—» - _[pl(O)]_ C1] . —, _ |C1€™
The solutionto —- = [0 A, p, p0)= p,(0)] = [02] is p(t) = oeht|
Or using ¥y as the function and d;, d, as the initial (i.e. t = 0) values of y,(t),y,(t) :

dlelltl

el

. d_j’) _ )’1 0 = = _ [dl] . _
The solution to i [0 A, y, y(0)= d, is y(t) = 4, e
It’s easy to see how this would generalize to larger than 2 X 2 linear systems of differential equations.

So what the heck do you do if you are trying to solve the problem (find X(t)) for

d'f - - - Cl

T Ax, x,=2x(0)= [Cz]
where A is not diagonal? How do we change this more difficult problem into a simpler one?
With a change of variables. What sort of change?

Thank goodness once again for eigenvectors and eigenvalues.



Suppose A = PDP~! where the columns of P are the (linearly independent) eigenvectors of A
and D contains the eigenvalues of A.

Then we have

dx c
DR — -1= - 1
- =AX=PDP'X, (0) [ 02]
Multiplying everything on the left by P~! results in
1 2 pp-iz, priz(o) = pt ]
dt ’ C2

Here’s our change of variable: Let ¥ = P7'X (so Py = X)

Ay d 4 d¥ . 1. .
Then d—f = E(P 1¥)=p1 — (since P L is a matrix of constant values) so we have

d)_}_ > /11 O - d1 _ = _ -1= _ -1 =2 _ -1 Cl
E—Dy—[o itz dz]—y(O)—P %(0) = P~1%, = P [62]'

It’s easy to find the solution for this, as we saw on page 2:

d_i_[/ll 0
dt

A P OB ol I 7<t)=[”(”]=[d1"“].

Y2 (t) dz elzt

Where P = [ ¥; ¥, ], since y = P~1X, we have (changing variables back from y to X)

— — - — t - — d e;{lt — —
20 = P30 =[5, 51 [[10] = 17, 51| G| = s 451 4 0 005,
2

The above is described as “decoupling” (unjoining of) the system of equations.

-_— = —x1 + 10x2 > _
Example: ;ll;z i.e. Z—f = Ax where A= [ ; 12]
? = le + 4x2

The eigenvectors/eigenvalues of A are ¥, = [_ﬂ, U, = [ﬂ and 4, = -6, 1, = 9.

So x(t) =d, eM' v, +d, et v, =d, e ® [_ﬂ +d, e [ﬂ .
Now to find d; and d,. Suppose that X¥(0) = [55;]' then (as we already saw above) we have

1 _
o=@ = Hvaeofi] = 2 1[2] = [2]= 5 1 El=17)
So x(t) = —1e 6 [_ﬂ + 7e% [ﬂ = [_22:2 1_ ;22:]

Thatis, x,1(t) = —2e7% + 7€ and x,(t) = e % + 7e%.

Check: % = 12e % + 63e% = —(—2e7% + 7e%) + 10(e % + 7e%) v
22 = —6e% + 63e” = 5(—2e % +7e%) + 4(e +7e%) v



By the way, now is a good time to (re-)read Section 5.6, p. 306, about change of variable. In 5.6
this change of variable idea was not really needed in order to solve the discrete time problems,
but in 5.7 with continuous time problems it is necessary.

Another (really cool) view of all of this...

First, recall the Taylor Series e* =1 + x + %xz + %x3 + -

It turns out that the same is true for a matrix:

1 1
A _ 2 A3
e —I+A+2!A +3!A +

This would be tough to compute (especially the infinite --- part) unless we have a way to easily
compute A* forany k. As usual, it’s eigenvectors and eigenvalues that makes this possible.

Ak 0

Recall: if A = PDP~1, then A* = PDkp~1 =p l 01 Akl P~1 and we have
2

elt = | + At o+ o (Ap? + 3 (A1)} +

=PP1 + PDtP' + —P(DO?P 1+ P(DP! + -

P [ I + (D) + %(Dt)z + %(Dt)3 + o ]P‘l

SCE R R P C R e

0 1 0 Ayt 2! 0 (A,t)? 3! 0 (A,0)3
1+ Lt + 202 + 2 (403 + - 0
—p 2! 3! . ) p-1
0 1+ 2t +5 (0% + 5 (A38)° + -
et 0
=P at| P
0 e™

And similarly for larger than 2 X 2 matrices.



Recall: the solution to the differential equation (also known as an initial value problem)

dx
= = ax, x(0) = x

Is x(t) = xge™.

Then the solution to the multivariable differential equation

x(t) = e“tx, (a matrix times a vector)

e)u]_t 0 o
=P 0 eAZt P X0
A4t
= [v; vz][ 0 ot [dz]

— [ehtT)’l elzti_fz] [Zl]
2

= d1 ellt‘l_)’l + dz elzt‘l_jz
d S
where [ 1] = P~ 1X,.
d;

(Does the above formula for X(t) look familiar?)



a+ib

In our next example we use the fact e’? = cosb + isinb so e’ = e%? = e*(cos b + isinb).

Example 1: Predator/prey example (with complex eigenvalues/vectors): recall O = Owls, R = Rats.

do

—= .10+ .2R >

dt . odp . _ [0 [ 1 .2
dR i.e. dt_Ap wherep—[R],A—[_.2 _1].
E:_'20+'1R

What do the values of 4 tell us?

The eigenvectors and eigenvalues of A are [ﬂ, [ 1] and.1+.2i, .1 —.2i:

3 ALl s [ =L
Then population p(t) = d e’ v, + d,e’2'v, = d, [1] e(1+20t 1 g, [ l] e(1=2Dt thatis

O(t) — dl(l)e(.1+.2i)t + dz(l)e(.l—.Zi)t
= e'1[d,(cos .2t + i sin .2t) + d,(cos .2t — i sin .2t)]
= e[(d; + d;) cos .2t + (d; — d;) (i) sin .2t]

R(t) = dy()e‘1+2Dt 4 g, (—i)el1-20t
= eM[d,(i)(cos .2t + i sin .2t) + d,(—i)(cos .2t — i sin .2t)]
= e*[(d; — d) (i) cos .2t — (d; + d;) sin .2t]

So
0(t) = e'*[b; cos .2t + b, sin . 2t]
R(t) = e'*[b, cos .2t — b sin .2t]
where
b1 = d1 + d2
b, = i(dy — d3)
Suppose we have initial conditions of: 0(0) = 20, R(0) = 10
Then:
20 = 0(0) = e°[b; cos 0 + b, sin 0] = b,
10 = R(0) = e°[b, cos 0 — by sin0] = b,
So:

O(t) = el*[20 cos .2t + 10sin . 2t]
R(t) = elt[10 cos .2t — 20 sin . 2t]



A bit more generally (but still for this specific type of matrix A), where
do

—= aO0O+bR =
dR i.e. _dt_Ap wherep—[R], A—[_b
%:—bo-FaR

and 0(0) = 0y, R(0) = Ry, the solution is
0(t) = e™[0, cos bt + R, sin bt]
R(t) = e™[R, cos bt — O sin bt]

A few interesting cases, with 0, = 20, R, = 10.

o)

a>0,b>0,eg. a=.01, b=.2 \

0(t) = e®1[20 cos .2t + 10 sin . 2t] 7@;\

R(t) = e®'[10 cos .2t — 20sin .2t] © 0 50 \‘h
(And what does a = .01 mean?)

50.

a=0,b>0,eg.a=0 b=.2
O(t) = 20cos .2t + 10sin .2t

-~

R(t) = 10cos .2t — 20sin .2t

(And what does a = 0 mean?)

a<0,b>0,eg.a=—-.01, b=.2

0(t) = e%1*[20 cos .2t + 10 sin . 2t] /X\ 0

&

N
R(t) = e~°1t[10 cos .2t — 20 sin .2¢t] '° \y/ y X/

(And what does a = —.01 mean?)

o

NN

If b < 0, then the predator and the prey have simply swapped roles: the hunter becomes the

hunted and conversely. If b = 0 then there is no interaction between owls and rats.



Finally, a few thoughts before we compare the discrete and continuous cases.

First, if AV = AV, then (A — cI)V = AV — c¢v = (A — ¢)V. Thatis, if A is an eigenvalue of A4,
then A — c is an eigenvalue of A — cI and with the same eigenvector .

A .17= VR A-D% =0Q-1D
5 dl]= 7L 5 sIf]= sl
5 =21 5 3=

Second, a comparison of the discrete and continuous cases for one population which grows at
2% per year with initial population of p,.

Discrete: Pri1=1.02p, = pr = (1.02)kpy = po (1.02)*

dp

. =-02p =p) = e%%t p, (or po e%%, if you prefer).

Continuous:

2 3 4
Third, remember the Taylor Series e‘ =1 + t + % + % + % +- = 1+t if tissmall.
So, for example, e%? = 1.02, so (e%?)! = (1.02)%,i.e. e %%t =~ (1.02)".

Note: e%2t is actually slightly > (1.02)t, especially as t gets larger. This is analogous to how if
you earn 2% interest per year in the bank, 2% continuously compounded interest will result in
more interest earned than 2% earned once a year. Indeed, et = (e%?)! = 1.0202¢. So 2%
continuous growth is like 2.02% growth that is experienced once a year.

So e92t ~ (1 +.02)t = (1.02)¢, and similarly, e™*?t ~ (1 — .42)t = 0.58¢. We'll see both of
these in the following example.



Discrete Example 2 (Example 1 from Book Section 5.6, as well as Example 1 from Handout 5.6):

[33] and 102,':: . 10':00,‘ki 1'.?;;' thatis, [Io?]k+1 - [—.'1504 121] [Ioz]k'

Where [10?]0

then [9] = cu(1.02)¢ [19] + e, 59 [§] where [¢1] = [19 3] [35] = 3]

That s, [g]k — 2(1.02)k [}g] +3(.58)k [i] — (1.02)k [;g] + (.58)k [135] .

where k is the (discrete) number of months that have gone by.

The continuous analog of that example:

do _

Where [10?]0 = Bg] and g—_;; N ;0:’00: 0411;, that is, g = [: 5’04 Oﬂ X, where X = [}Oe]
t
Then X(t) = [ggg] =d, e’ [ig] + dye 4%t [i] where Z;] = [12 i - [gg] = [g]

0(t)

Thatis, x(t) = [R(t)

— pe02t [1;’] 4 342t [i] _ p02t ;g] + o2t [135]'

where t is (continuous) amount of time in months that has gone by.



