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Math 260 Section 5.6 
 
Most important ideas: 

x Solutions to discrete (continuous in 5.7) dynamical system initial value problems. 
x Complex eigenvalues and eigenvectors and their use in solutions to differential equations. 

 
Let’s spend a few minutes discussing what in  ܴଶ  

Ԧݒ௞ܣ = Ԧଵݒ௞(ܿଵܣ + ܿଶݒԦଶ) = Ԧଵݒଵ௞ܿଵߣ +  Ԧଶݒଶ௞ܿଶߣ

looks like, where  ݒԦଵ,    .ܣ  Ԧଶ  are eigenvectors ofݒ
 
Let’s look at Book Example 1 to get familiar with the sort of problem we’ll see in this section.            
For now, we’ll not look at the details of how they deal with this problem.  For now, let’s just see 
how the populations change.  For now, let’s use their given value of  ݌ = .104.  So 

൤ܱ௞ାଵܴ௞ାଵ
൨ = ቂ . 5   .4

െ.104 1.1ቃ ൤
ܱ௞
ܴ௞
൨ ,  that is,  ݔԦ௞ାଵ = Ԧ௞ݔܣ   where  ݔԦ௞ = ൤ܱ௞ܴ௞

൨   and  ܣ = ቂ . 5   .4
െ.104 1.1ቃ.   

Let’s discuss what the four values in  ܣ  mean.      

Suppose the initial owl and rat populations are  ݔԦ଴ = ቂ200
60 ቃ.  Then after one month we have   

Ԧଵݔ = Ԧ଴ݔܣ = ቂ . 5   .4
െ.104 1.1ቃ ቂ

200
60 ቃ = ቂ124.0

45.2ቃ 
and after two months        

Ԧଶݔ = Ԧଵݔܣ = ቂ . 5   .4
െ.104 1.1ቃ ቂ

124.0
45.2ቃ ൎ ቂ80.1

36.8ቃ 
and so on to get 

݇ 0 1 2 3 4 5 10 15 20 25 

Ԧ௞ ቂ200.0ݔ
60.0ቃ ቂ124.0

45.2ቃ ቂ80.1
36.8ቃ ቂ54.8

32.2ቃ ቂ40.3
29.7ቃ ቂ32.0

28.5ቃ ቂ22.9
29.0ቃ ቂ24.5

31.8ቃ ቂ27.0
35.1ቃ ቂ29.8

38.8ቃ 

 
These points are plotted on the next page.  In that plot, the first value in each population vector 
is like the  ݔ value and the second value is like the  ݕ value.  These are the top right set of points, 
the purple ones if you have this in color.  I also have plotted five other sets of population points, 
which I’ll not list in detail, but here are the six initial populations used: 

ቂ૛૙૙૟૙ቃ  , ቂ૛૙૙૝૙ቃ , ቂ૛૙૙૛૙ቃ  , ቂെ૛૙૙െ૟૙ቃ  , ቂെ૛૙૙െ૝૙ቃ  , ቂെ૛૙૙െ૛૙ቃ    

The last three with negative populations don’t make sense, of course, but they help us see the 
various paths the population points take, depending on the initial populations. 
 
It seems like there are certain paths that these vectors follow.  A few questions: 

1. What exactly are these paths, and how are they related to  ܣ  and/or  ݔԦ଴? 
2. Why are the population points moving toward or away from the origin? 
3. Why are there different “speeds” at which these points seem to move? 

The short answers:  eigenvalues and eigenvectors, which we’ll see a little later.  In the second 
plot, I’ve plotted just the two lines/paths that the population points seem to be following:  the 
eigenvectors of  ܣ. 
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Recall that if  ݒԦଵ, ,Ԧଶݒ … , ,ଵߣ  corresponding to eigenvalues  ܣ  Ԧ௡  are eigenvectors ofݒ ,ଶߣ … ,  ,௡ߣ
and if  ݒԦ = ܿଵݒԦଵ + ܿଶݒԦଶ + +ڮ ܿ௡ݒԦ௡, then 

Ԧݒܣ = Ԧଵݒଵܿ)ܣ + ܿଶݒԦଶ + +ڮ ܿ௡ݒԦ௡) = Ԧଵݒଵܿଵߣ + Ԧଶݒଶܿଶߣ + +ڮ  Ԧ௡ݒ௡ܿ௡ߣ
and 

Ԧݒ௞ܣ = Ԧଵݒ௞(ܿଵܣ + ܿଶݒԦଶ + +ڮ ܿ௡ݒԦ௡) = Ԧଵݒଵ௞ܿଵߣ + Ԧଶݒଶ௞ܿଶߣ + +ڮ  . Ԧ௡ݒ௡௞ܿ௡ߣ

With this in mind, let’s think about what is really going on in this example.  The eigenvectors and 

corresponding eigenvalues of  ܣ = ቂ . 5 . 4
െ.104 1.1ቃ  are  ቂ10

13ቃ, ቂ
5
1ቃ  and  1.02, 0.58.   

Since 

Ԧ଴ݔ = ቂ200
60 ቃ = ଶ଴

ଵଵ
ቂ10
13ቃ + ସ଴଴

ଵଵ
ቂ51ቃ ൎ ቂ18.20

23.64ቃ + ቂ181.82
36.36ቃ  

then 

Ԧ௞ݔ ൎ (1.02)௞ ቂ18.20
23.64ቃ + (0.58)௞ ቂ181.82

36.36ቃ 
For example,  

Ԧଵ଴ݔ ൎ (1.02)ଵ଴ ቂ18.20
23.64ቃ + (0.58)ଵ଴ ቂ181.82

36.36ቃ ൎ ቂ22.9
29.0ቃ 

The fact that  

Ԧ௞ݔ = (1.02)௞ ቂ18.20
23.64ቃ + (0.58)௞ ቂ181.82

36.36ቃ 

is somewhat useful in allowing us to more quickly (with less work) compute  ݔԦ௞,  but its real 
importance is that it helps us understand what paths the population points take, depending on 
the initial populations  ݔԦ଴.  Let’s talk about this for Book Example 1 in the plots on the previous 
page.  The two paths (the two lines in the second plot) are simply the eigenvectors of  ܣ. 
 
Let’s look at Book Example 2 (with Figure 1), Example 3 (with Figure 2), and Example 4 (with 
Figure 3).  The eigenvalues of diagonal matrices are simply the diagonal values, and the 
eigenvectors are simply the standard bases vectors (a.k.a. the columns of the identity matrix).     
So in this case, the paths along which the population points move are simply the  ݔ  and  ݕ  axes, 

since  ቂ10ቃ  and  ቂ01ቃ  are the eigenvectors of the  2 ×  2  diagonal matrices in these examples.   

 
In these problems we see answers to the second and third questions about why the paths move 
toward or away from the origin and why the rate of change is faster or slower along those paths: 

x The spacing of the points tells us how quickly the points are moving, how quickly the 
population amounts are changing.  Larger gaps mean more rapid movement, which we 
see in the examples results from more extreme eigenvalues: 
x If the value is  > 1, then the points move away from the origin, and the larger the 

value, the faster the movement of the points away from the origin. 
x If the value is  0 <    < 1, then the points move toward the origin, and the smaller the 

value (the closer to 0), the faster the movement of the points toward the origin.  
Let’s think about what these values mean in the diagonal matrices in Book Examples 2 – 4.  So 
this is like we saw in Book Example 1, except that the paths the points followed in Example 1 are 
not simply the  ݔ  and  ݕ  axes, they are the eigenvectors of  ܣ and the eigenvalues determine 
whether the movement along each “eigenvector path/axis” is toward or away from the origin. 
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Here is another way we could have plotted the two populations, each as a function of month.  
Here are the vectors we had found. 
 
݇ 0 1 2 3 4 5 10 15 20 25 

Ԧ௞ ቂ200.0ݔ
60.0ቃ ቂ124.0

45.2ቃ ቂ80.1
36.8ቃ ቂ54.8

32.2ቃ ቂ40.3
29.7ቃ ቂ32.0

28.5ቃ ቂ22.9
29.0ቃ ቂ24.5

31.8ቃ ቂ27.0
35.1ቃ ቂ29.8

38.8ቃ 

 

 
 
On day 2 we’ll talk about complex eigenvalues.  This is an interesting case, both mathematically 
and in terms of what it means in how the owl and rat populations are changing.   
 
First, recall the Taylor Series     ݁௫ = 1 + ݔ + ଵ

ଶ!
ଶݔ + ଵ

ଷ!
ଷݔ +    ڮ

                                      sin ݔ = ݔ െ ଵ
ଷ!
ଷݔ + ଵ

ହ!
ହݔ െ     ڮ

                                     cos ݔ = 1 െ ଵ
ଶ!
ଶݔ + ଵ

ସ!
ସݔ െ  ڮ

So 
݁௜௫ = 1 + ݔ݅ + ଵ

ଶ!
ଶ(ݔ݅) + ଵ

ଷ!
ଷ(ݔ݅) + ଵ

ସ!
ସ(ݔ݅) + ଵ

ହ!
ହ(ݔ݅) +   ڮ

                                               = ቀ1 െ ଵ
ଶ!
ଶݔ + ଵ

ସ!
ସݔ െ +ቁڮ ݅ ቀݔ െ ଵ

ଷ!
ଷݔ + ଵ

ହ!
ହݔ െ ቁڮ = cos ݔ + ݅ sin   .ݔ

Here are two examples that arise later in our examples—and I’ll draw what they look like: 

2݁௜ቀ
గ
଺ቁ = 2 ቀcos ቀ

ߨ
6
ቁ + ݅ sin ቀ

ߨ
6
ቁቁ = 2ቆ

ξ3
2

+ ݅
1
2
ቇ = ξ3 + ݅ 

2݁௜ቀି
గ
଺ቁ = 2 ቀcos ቀെ

ߨ
6
ቁ + ݅ sin ቀെ

ߨ
6
ቁቁ = 2ቆ

ξ3
2
െ ݅

1
2
ቇ = ξ3 െ ݅ 

Another very interesting example is that  ݁௜గ = cosߨ + ݅ sinߨ = െ1,  so that  ݁௜గ + 1 = 0 .                                        
A few years back, this was voted the #1 equation of all time in a poll run by the NY Times. 
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Now on to our predator/prey example with complex eigenvalues/vectors:  

ܱ௞ାଵ =   ξଷ
ଶ

 ܱ௞ +  ଵ
ଶ

 ܴ௞ ൎ .866 ܱ௞ + .5 ܴ௞    

 ܴ௞ାଵ = െଵ
ଶ

 ܱ௞ + ξଷ
ଶ

 ܴ௞ ൎ െ.5 ܱ௞ + .866 ܴ௞
   i. e.   ݔԦ௞ାଵ = Ԧ௞ݔ  Ԧ௞   whereݔܣ = ൤ܱ௞ܴ௞

൨ ܣ   , = ቎
ξଷ
  ଶ

ଵ
ଶ

െ ଵ
ଶ

ξଷ
  ଶ

቏ 

In class, let’s discuss the significance of the four values in  ܣ.  

The eigenvectors and eigenvalues of  ܣ  are  ቂ1݅ ቃ,  ቂ
  1
െ݅ቃ  and  ξଷ

ଶ
+ ௜

ଶ
, ξଷ

ଶ
െ ௜

ଶ
 .   

(Notice that the size of both eigenvalues is  ቀξଷ
ଶ
ቁ
ଶ

+ ቀଵ
ଶ
ቁ
ଶ

= 1.) 

቎
ξଷ
  ଶ

ଵ
ଶ

െ ଵ
ଶ

ξଷ
  ଶ

቏ ቂ1݅ ቃ = ቎
 ξଷା௜
ଶ

ିଵାξଷ ௜
ଶ

቏ = ξଷା௜
ଶ
ቂ1݅ ቃ    and   ቎

ξଷ
  ଶ

ଵ
ଶ

െ ଵ
ଶ

ξଷ
  ଶ

቏ ቂ  1
െ݅ ቃ = ቎

 ξଷି௜
ଶ

ିଵିξଷ ௜
ଶ

቏ = ξଷି௜
ଶ
ቂ  1
െ݅ ቃ  

Before we jump into the details of this problem, let’s just plot a population path for some initial 

population.  Suppose  ݔԦ଴ = ൤ܱ଴ܴ଴
൨ = ቂ200

60ቃ.  Then we have (after rounding a bit): 

݇ 0 1 2 3 4 5 6 7 8 9 10 11 12 

Ԧ௞ ቂ200ݔ
60ቃ ቂ

203
െ48ቃ ቂ

152
െ143ቃ ቂ

60
െ200ቃ ቂ

െ48
െ203ቃ ቂ

െ143
െ152ቃ ቂ

െ200
െ60ቃ ቂ

െ203
48ቃ ቂ

െ152
143ቃ ቂ

െ60
200ቃ ቂ

48
203ቃ ቂ

143
152ቃ ቂ

200
60ቃ 

which we would plot in either of the two ways we’ve seen earlier. 

          

These kind of look like  ݁݊݅ݏ  or  ܿ݁݊݅ݏ݋  functions, don’t they?  What’s that all about?  We’ll see. 

Note that  ܣ = ቎
ξଷ
  ଶ

ଵ
ଶ

െ ଵ
ଶ

ξଷ
  ଶ

቏ = ൤cos߶ െ sin߶
sin߶     cos߶൨  for  ߶ = െ30°,  so  ܣ is the matrix that rotates 

the vector which it is multiplying by  െ30°.  See p. 72 in the book.  So after 12 rotations, the 
resulting population vectors (due to multiplying by ܣ) repeat.  

The result of complex (imaginary) eigenvalues oscillation in the populations.  This is the natural 
behavior of populations that are competing, such as predators and prey.  Of course, negative 
populations don’t make sense—the equations given above would actually be a little different 
than what is given—but this oscillatory behavior would still occur. 
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Let’s modify our problem a bit (just multiply all values in  ܣ  by 2).  So we have 

   ܱ௞ାଵ =  ξ3 ܱ௞ +   1 ܴ௞
 ܴ௞ାଵ = െ1 ܱ௞ + ξ3 ܴ௞

      i. e.   ݔԦ௞ାଵ = Ԧ௞ݔ  Ԧ௞   whereݔܣ = ൤ܱ௞ܴ௞
൨ ܣ   , = ൤ ξ3 1

െ1 ξ3
൨ 

The eigenvectors and eigenvalues of  ܣ  are  ቂ1݅ ቃ,  ቂ
  1
െ݅ቃ  and  ξ3 + ݅, ξ3 െ ݅ : 

൤ ξ3 1
െ1 ξ3

൨ ቂ1݅ ቃ = ൤   ξ3 + ݅
െ1 + ξ3 ݅

൨ = (ξ3 + ݅) ቂ1݅ ቃ    and    ൤ ξ3 1
െ1 ξ3

൨ ቂ  1
െ݅ ቃ = ൤   ξ3 െ ݅

െ1 െ ξ3 ݅
൨ = (ξ3 െ ݅) ቂ  1

െ݅ ቃ 

Where  ݔԦ଴ = ܿଵݒԦଵ + ܿଶݒԦଶ, then  ݔԦ௞ = ൤ܱ௞ܴ௞
൨ = Ԧ଴ݔ௞ܣ = ܿଵ൫ξ3 + ݅൯

௞
ቂ1݅ ቃ + ܿଶ൫ξ3 െ ݅൯

௞
ቂ  1
െ݅ቃ , so 

ܱ௞ = ܿଵ(1)൫ξ3 + ݅൯
௞

+ ܿଶ(1)൫ξ3 െ ݅൯
௞

  

       = ܿଵ(1) ቀ2݁௜ቀ
ഏ
లቁቁ

௞
+ ܿଶ(1) ቀ2݁௜ቀି

ഏ
లቁቁ

௞
  

       = ܿଵ ቆ2௞݁௜൬௞ቀ
ഏ
లቁ൰ቇ + ܿଶ ቆ2௞݁௜൬ି௞ቀ

ഏ
లቁ൰ቇ  

       = ܿଵ ቀ 2௞  ቀcos ൬݇ ቀగ
଺
ቁ൰ + ݅ sin ൬݇ ቀగ

଺
ቁ൰ቁ ቁ + ܿଶ ቀ 2௞  ቀcos ൬െ݇ ቀగ

଺
ቁ൰ + ݅ sin ൬െ݇ ቀగ

଺
ቁ൰ቁ ቁ  

       = ܿଵ ቀ 2௞ cos ൬݇ ቀగ
଺
ቁ൰ + ݅ 2௞ sin ൬݇ ቀగ

଺
ቁ൰ ቁ + ܿଶ ቀ 2௞ cos ൬݇ ቀగ

଺
ቁ൰ െ ݅ 2௞ sin ൬݇ ቀగ

଺
ቁ൰ ቁ  

       = (ܿଵ + ܿଶ) ቀ2௞ cos ൬݇ ቀగ
଺
ቁ൰ቁ + ݅(ܿଵ െ ܿଶ) ቀ2௞ sin ൬݇ ቀగ

଺
ቁ൰ቁ .  

ܴ௞ = ܿଵ(݅)൫ξ3 + ݅൯
௞

+ ܿଶ(െ݅)൫ξ3െ ݅൯
௞

  

       = ܿଵ(݅) ቀ2݁௜ቀ
ഏ
లቁቁ

௞
+ ܿଶ(െ݅) ቀ2݁௜(ିቀ

ഏ
లቁ)ቁ

௞
  

       = ܿଵ ቆ݅ 2௞ ݁௜൬௞ቀ
ഏ
లቁ൰ቇ െ ܿଶ ቆ݅ 2௞݁

௜൬ି௞ቀഏలቁ൰ቇ  

       = ܿଵ ቀ݅ 2௞ ቀcos ൬݇ ቀగ
଺
ቁ൰ + ݅ sin ൬݇ ቀగ

଺
ቁ൰ቁ ቁ െ ܿଶ ቀ݅ 2௞ ቀcos ൬െ݇ ቀగ

଺
ቁ൰ + ݅ sin ൬െ݇ ቀగ

଺
ቁ൰ቁ ቁ  

       = ܿଵ ቀ݅ 2௞ cos ൬݇ ቀగ
଺
ቁ൰ െ  2௞ sin ൬݇ ቀగ

଺
ቁ൰ ቁ െ ܿଶ ቀ݅ 2௞ cos ൬݇ ቀగ

଺
ቁ൰+ 2௞ sin ൬݇ ቀగ

଺
ቁ൰ ቁ  

       = ݅(ܿଵ െ ܿଶ) ቀ2௞ cos(݇ ቀగ
଺
ቁ) ቁ െ (ܿଵ + ܿଶ)(2௞ sin ൬݇ ቀగ

଺
ቁ൰) .  

 

Recall: 

cos(െߠ) = cos  ߠ

    sin(െߠ) = െ sinߠ 
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So 

ܱ௞ = 2௞[ܾଵ cos(݇ ቀ
ߨ
6
ቁ) + ܾଶ sin(݇ ቀ

ߨ
6
ቁ)] 

ܴ௞ = 2௞[ܾଶ cos(݇ ቀ
ߨ
6
ቁ) െ ܾଵ sin(݇ ቀ

ߨ
6
ቁ)] 

where 
ܾଵ =    ܿଵ + ܿଶ   
ܾଶ = ݅(ܿଵ െ ܿଶ)

 
Note that for  ݇ = 0  we have 

ܱ଴ = 2଴ ቈܾଵ cosቆ0 ቀ
ߨ
6
ቁቇ + ܾଶ sinቆ0 ቀ

ߨ
6
ቁቇ቉ = ܾଵ 

ܴ଴ = 2଴ ቈܾଶ cosቆ0 ቀ
ߨ
6
ቁቇ െ ܾଵ sinቆ0 ቀ

ߨ
6
ቁቇ቉ = ܾଶ 

 
So this tells us how to find  ܾଵ  and  ܾଶ  in the formulas for  ܱ௞  and  ܴ௞  above:  they are simply 
the initial populations.  So after wading through all of the above messy details, this model turns 
out to be pretty simple.  Again, the periodic (oscillating) nature of the populations is because the 
eigenvalues are complex. 

 
A real (all of its values/entries are real numbers) matrix of any size with complex eigenvalues will 
have those eigenvalues in complex conjugate pairs, e.g. ߣଵ = ξ3 + ݅ ֜ ଶߣ = ଵതതതߣ = ξ3 െ ݅ as 

above or 0.9 ± .2݅,  as in Book Example 6.  This is also true of the eigenvectors, e.g. ݒԦଵ = ቂ1݅ ቃ ֜

Ԧଶݒ = Ԧଵതതതݒ = ቂ 1
െ݅ቃ, as above. 

 
Complex eigenvalues mean rotation, as seen above.  In the simple case of  2 ×  2  matrices, the 
eigenvalues determine the rotation angle.  Also, the size of the eigenvalues determines whether 
the populations are increasing (if  |ߣ| > 1) or decreasing (if  |ߣ| < 1) or not changing  (if  |ߣ| = 1) 
as the rotations occur.  All of these statements are exactly true if  ܣ  is a rotation matrix (or some 
multiple of one), as on page 72, and approximately true otherwise, as in Book Example 6.   
 
Let’s look at the two examples above, and then Book Example 6.   
  
This is more complicated if there are more populations, but complex eigenvalues still are what 
lead to oscillation in the populations.  In the book they briefly discuss this beginning at the bottom 
of page 307, but in our discussion we’re not going to get into things beyond the  2 × 2 case. 
 
The discussion regarding the change of variable  ܲ  on page 306 is more important and more 
pertinent to Section 5.7, so I’ll wait until then for us to discuss it in class.  There is already enough 
going on in this section without.  In this section, it’s of interest.  In the next section, we simply 
cannot do what we need to do without it. 


