Most important ideas:

- Eigenvectors and eigenvalues.
- Various properties of eigenvectors and eigenvalues.
- Linear combinations of eigenvectors.
- Eigenspaces.

Example 1: "Random" matrix $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Then $A\vec{v} = \begin{bmatrix} 29 \\ 27 \end{bmatrix}$, which of course is not a multiple of \vec{v} . In general, $A\vec{v} \neq$ some multiple of \vec{v} .

So why are we even talking about this? Because for some matrices A, there are vectors \vec{v} for which $A\vec{v} =$ some multiple of \vec{v} . In fact, for every matrix there is often one and sometimes many different such vectors, and these vectors are extremely important and useful.

Back to Example 1, with a more "carefully" chosen vector: $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -4 \\ -6 \end{bmatrix} = \begin{bmatrix} 8 \\ -6 \end{bmatrix} = -2 \begin{bmatrix} -4 \\ 3 \end{bmatrix}$.

Definition: If $A\vec{x} = \lambda \vec{x}$, then \vec{x} is an eigenvector of A with corresponding eigenvalue λ .

Question: For a given matrix A, how to find these eigenvectors and eigenvalues?

First, note that $A\vec{x} = \lambda \vec{x}$ can also be written as $A\vec{x} - \lambda \vec{x} = \vec{0}$, that is, $(A - \lambda I)\vec{x} = \vec{0}$. So one way to find the vector \vec{x} in $A\vec{x} = \lambda \vec{x}$ is to solve for \vec{x} in $(A - \lambda I)\vec{x} = \vec{0}$.

(Notice that to do this we are assuming that we already know the value of eigenvalue λ . In Section 5.2 we will learn how to find the values of the eigenvalues λ for a given matrix.)

Example 1 again: Suppose we know that another eigenvalue of $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$ is $\lambda = 5$. Let's find the corresponding eigenvector.

That is, let's find the vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ for which $A\vec{x} = 5\vec{x}$, i.e. $(A - 5I)\vec{x} = \vec{0}$: $A - 5I = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} - 5\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix}$, and $\begin{bmatrix} -4 & 4 \\ 3 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so the vector \vec{x} we are looking for is any multiple of $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Check: $\begin{bmatrix} 1 & 4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

So one eigenvalue of this matrix is $\lambda = 5$ with corresponding eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

We also saw above that $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -4 \\ 3 \end{bmatrix} = -2 \begin{bmatrix} -4 \\ 3 \end{bmatrix}$, so another eigenvalue of this matrix is $\lambda = -2$ with corresponding eigenvector $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$.

So just how many different eigenvalues and eigenvectors does a matrix have?

Example 2: $A = \begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix}$ has eigenvalues $\lambda = 4$ and $\lambda = 6$. Find the eigenvectors.

For $\lambda = 4$: Solve for \vec{x} in $A\vec{x} = 4\vec{x}$, that is, in $(A - 4I)\vec{x} = \vec{0}$:

$$\begin{bmatrix} 2 & -2 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 1 & -1 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 Eigenspace for $\lambda = 4$

So we just found two different (linearly independent) eigenvectors for the eigenvalue 4.

Check: $\begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Any linear combination of different eigenvectors corresponding to the <u>same</u> eigenvalue is also an eigenvector corresponding to that eigenvalue. More on this idea on the next page.

For $\lambda = 6$: Solve for \vec{x} in $(A - 6I)\vec{x} = \vec{0}$: $\begin{bmatrix} 0 & -2 & 0 & | & 0 \\ 0 & -2 & 0 & | & 0 \\ 1 & -1 & -2 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_3 \\ 0 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$ Check: $\begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

So this 3×3 matrix has three different eigenvectors (coincidence of 3?), two of which correspond to one eigenvalue, while a third eigenvector corresponds to a second eigenvalue.

Eigenvectors are non-zero vectors. Otherwise, every number would be an eigenvalue of every matrix A since $A\vec{0} = \lambda \vec{0}$ for any A and for any value of λ .

On a different note, if A has an eigenvalue of 0, then $A\vec{v} = 0\vec{v} = \vec{0}$ for some non-zero \vec{v} . That is, non-zero \vec{v} is in the nullspace of A, which is bad, which also means that every other bad versions of the items in the IMT are also true.

Example 3: $A = \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix}$ has eigenvalues 0 and -2. What are the corresponding eigenvectors? For $\lambda = -2$: Solve for \vec{x} in $(A - (-2)I)\vec{x} = \vec{0}$: $\begin{bmatrix} 3 & -3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, so $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (and any multiple of it) is the eigenvector corresponding to eigenvalue $\lambda = -2$. Check: $\begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. \checkmark For $\lambda = 0$: Solve for \vec{x} in $(A - 0I)\vec{x} = \vec{0}$, i.e. in $A\vec{x} = \vec{0} \begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, so $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ (and any multiple) is the eigenvector corresponding to eigenvalue $\lambda = -2$. Check: $\begin{bmatrix} 1 & -3 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. \checkmark

We could already (i.e. before considering eigenvalues/vectors) see that A is bad since the columns of A are linearly dependent, det A = 0, etc.

<u>Four important properties</u>. If *A* has the eigenvalue λ with two eigenvectors \vec{u} and \vec{v} , that is, if $A\vec{u} = \lambda \vec{u}$ and $A\vec{v} = \lambda \vec{v}$, then the following are true:

- 1. $A(c\vec{v}) = c(A\vec{v}) = c(\lambda\vec{v}) = \lambda(c\vec{v}).$
- 2. $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = \lambda\vec{u} + \lambda\vec{v} = \lambda(\vec{u} + \vec{v}).$
- 3. $A^n \vec{v} = \lambda^n \vec{v}$ for $n \ge 1$. This is actually true for any integer n, whether positive, negative or 0.
- 4. $A^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$, assuming that A^{-1} exists.

Properties 1 and 2 in Example 2:

$$\begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

and where 2
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix} \text{ we see that } \begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 8 \\ 24 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix}.$$

Warning: combining (as linear combinations) eigenvectors corresponding to *different* eigenvalues does not create an eigenvector. In Example 2:

$$\begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 12 \\ 0 \\ 6 \end{bmatrix} = 6 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

and where 2
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + 6 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 14 \\ 2 \\ 6 \end{bmatrix} \text{ we see that } \begin{bmatrix} 6 & -2 & 0 \\ 0 & 4 & 0 \\ 1 & -1 & 4 \end{bmatrix} \begin{bmatrix} 14 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 80 \\ 8 \\ 36 \end{bmatrix} \text{ is } \underline{\text{not } a \text{ multiple of } \begin{bmatrix} 14 \\ 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 14 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix}$$

Property 3 in Example 2 (we use A^3):

52 0	[[1]		[64]		[1]	
64 0	1	=	64	= 4 ³	1	
76 64	L 0]		0		0	
52 0	[2]		432	1	[2	1
64 0	0	=	0	$= 6^{3}$	⁶ 0	
76 64	1		216]	1	
	.52 0 64 0 76 64 .52 0 64 0 76 64	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = $ $ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = $	$ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 64 \\ 64 \\ 0 \end{bmatrix} $ $ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 432 \\ 0 \\ 216 \end{bmatrix} $	$ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 64 \\ 64 \\ 0 \end{bmatrix} = 4^3 $ $ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 432 \\ 0 \\ 216 \end{bmatrix} = 6^3 $	$ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 64 \\ 64 \\ 0 \end{bmatrix} = 4^3 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} $ $ \begin{bmatrix} .52 & 0 \\ 64 & 0 \\ 76 & 64 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 432 \\ 0 \\ 216 \end{bmatrix} = 6^3 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} $

Property 4 in Example 2 (so the matrix being used is A^{-1}):

$$\begin{bmatrix} 1/6 & 1/12 & 0 \\ 0 & 1/4 & 0 \\ -1/24 & 1/24 & 1/4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/4 \\ 1/4 \\ 0 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$
$$\begin{bmatrix} 1/6 & 1/12 & 0 \\ 0 & 1/4 & 0 \\ -1/24 & 1/24 & 1/4 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2/6 \\ 0 \\ 1/6 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

The eigenspace $\lambda(A)$ of a matrix A for a particular eigenvalue λ is the set of all eigenvectors corresponding to that eigenvalue, plus the zero vector. The proof of this is given in Properties 1 and 2 above. We saw an example of an eigenspace at the top of page 2.

Feel free to use technology on larger problems to help with the work.