Most important ideas:

- The dimension of a vector space is equal to the number of vectors in its basis.
- The Basis Theorem on page 227.

Example 1: Consider $\left\{ \begin{bmatrix} 7\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\6\\5 \end{bmatrix}, \begin{bmatrix} 1\\9\\0 \end{bmatrix}, \begin{bmatrix} 5\\-15\\-21 \end{bmatrix} \right\}$ where $\begin{bmatrix} 7&2&1&5\\3&6&9&-15\\2&5&0&-21 \end{bmatrix} \sim \begin{bmatrix} 1&0&0&2\\0&1&0&-5\\0&0&1&1 \end{bmatrix}$.

Are the columns linearly independent? No, there is not a pivot in every column. We knew this would be the case, since the number of vectors > size of each vector.

Do the columns span R^3 ? Yes, there is a pivot in every row.

Theorem 9, page 225: If a vector space has dimension n, then any set of vectors with more than n vectors must be <u>linearly dependent</u> (although fewer than n vectors doesn't guarantee linear independence). For example, four vectors from R^3 are necessarily linearly dependent.

Example 2: A basis for R^3 is: Another basis for R^3 is: Another basis for R^3 is:

[7] [2] [1]	[1] [4] [7]	[1] [0] [0]
$\{ \begin{bmatrix} 7\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\6\\5 \end{bmatrix}, \begin{bmatrix} 1\\9\\0 \end{bmatrix} \}$	$\{ \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 7 \\ 8 \\ 0 \end{bmatrix} \}$	$\{\begin{bmatrix}1\\0\\0\end{bmatrix}, \begin{bmatrix}0\\1\\0\end{bmatrix}, \begin{bmatrix}0\\0\\1\end{bmatrix}\}$
L2J LJJ LUJ	LOJ LOJ LOJ	LOJ LOJ LIJ

Every basis for R^3 has **3** vectors, so the dimension of R^3 is **3**. See Theorem 10, page 226.

The dimension of the vector space which is simply $\{\vec{0}\}\$ is defined to be **0**.

Example 3: Suppose a basis for \mathbb{R}^n (for some *n*) is $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_7\}$. What is *n*? **7**.

Theorem 1, page 227. If V is a p-dimensional vector space ($p \ge 1$), any set of p vectors from V that... ...is linearly independent also spans V (and thus is a basis for V).

```
...spans V also is linearly independent (and thus is a basis for V).
```

We saw this idea in 4.3: see your class handout, near the bottom of the page 1.

Example 4: Find a basis for the column space of the 4×5 matrix *A*:

$$A = \begin{bmatrix} 1 & -2 & 1 & 1 & 5 \\ 2 & -4 & 0 & 1 & 10 \\ 3 & -6 & 0 & 1 & 13 \\ 4 & -8 & 1 & 1 & 14 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

So a basis is $\begin{cases} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, and dim *Col A* = **3** (the number of pivot columns).

Reminder: the non-pivot columns tells us how the extra two vectors (that are not part of the basis) can be built out of the three pivot columns found in the basis:

$$\begin{bmatrix} -2\\ -4\\ -6\\ -8 \end{bmatrix} = -2\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix} + 0\begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix} + 0\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} \text{ and } \begin{bmatrix} 5\\ 10\\ 13\\ 14 \end{bmatrix} = 3\begin{bmatrix} 1\\ 2\\ 3\\ 4 \end{bmatrix} - 2\begin{bmatrix} 1\\ 0\\ 0\\ 1 \end{bmatrix} + 4\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}$$

As we've seen, to find Nul A we need to do some work. Using the row reduced matrix we just found above, the solution to the homogenous problem (i.e., with right hand side of $\vec{0}$) is:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 - 3x_5 \\ x_2 \\ 2x_5 \\ -4x_5 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ -4 \\ 1 \end{bmatrix}, \text{ so } Nul \ A = span \{ \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 2 \\ -4 \\ 1 \end{bmatrix} \}$$

We just discovered (or were reminded) that the dimension of *Col A* is equal to the number of pivot columns (since the pivot columns of a matrix tell you which of its columns form a basis for its column space) and the dimension of *Nul A* is equal to the number of non-pivot columns (since the non-pivot columns tell you which of the variables of \vec{x} are free in finding the solution to $A\vec{x} = \vec{0}$).

Notice: number of pivot columns + number of non-pivot columns = total number of columns

In general: for $m \times n$ matrix A: dim Col A + dim Nul A = n

Also see Book Example 5, page 228.

Note: Suppose *H* is a subspace of *V*, then dim $H \leq \dim V$. See Theorem 11 on page 227.

Example 5: $V = R^3$ (which has dimension of 3), $H = \{ \begin{bmatrix} a+b\\-a+b\\a \end{bmatrix} : a, b \in R \}$. So $H \subseteq V$.

So *H* consists of all vectors of the form $\begin{bmatrix} a+b\\-a+b\\a \end{bmatrix} = a \begin{bmatrix} 1\\-1\\1 \end{bmatrix} + b \begin{bmatrix} 1\\1\\0 \end{bmatrix}$, so $H = span \{ \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \}$,

which is a basis for H, since the vectors are **linearly independent**. So $\dim H = 2$. And we see that $\dim H \leq \dim V$ ($2 \leq 3$).

Why not just put < rather than \leq ? The two dimensions can be equal, as seen in the next example. Example 6: $V = R^2$ (so dim V = 2), H = Col A where $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$, so $H \subseteq V$. $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$, so a basis for *Col A* is $\{\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}\}$, so dim H = 2 (and of course $2 \leq 2$).

Example 7: Suppose that *V* is the set of all 2×2 matrices, and *H* is the set of all real symmetric (that is, $A^T = A$) 2×2 matrices; that is, $H = \{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} : a, b, c \in R \}$. Then elements of (the things in) *H* are of the form $\begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, so a basis for *H* is $\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$. So dim H = 3. What is dim *V*? dim V = 4, since in general you get to choose 4 values for each matrix in *V*. And of course dim $H \leq \dim V$, since $H \subseteq V$.

	$H = span\{\vec{v}_1, \vec{v}_2\} \text{ for } \vec{v}_1, \vec{v}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \dim H = 2$		$H = span\{\vec{v}_1, \vec{v}_2, \vec{v}_3\} \text{ for } \vec{v}_1, \vec{v}_2, \vec{v}_3 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \dim H = 3$				
$T(\vec{v}) = A\vec{v}$ for $A =$	$T(\vec{v}_1), T(\vec{v}_2)$	$T: \mathbb{R}^3 \to \mathbb{R}^?$	$\dim T(H)$	$T(\vec{v}_1), T(\vec{v}_2), T(\vec{v}_3)$	Reduced echelon form of $[T(\vec{v}_1) \ T(\vec{v}_2) \ T(\vec{v}_3)]$	$T: \mathbb{R}^3 \to \mathbb{R}^?$	dim T(H)
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$	$\begin{bmatrix} 4\\10\\7 \end{bmatrix}, \begin{bmatrix} 3\\9\\15 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^3$	2	$\begin{bmatrix} 4\\10\\7 \end{bmatrix}, \begin{bmatrix} 3\\9\\15 \end{bmatrix}, \begin{bmatrix} 6\\15\\15 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^3$	3
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	$\begin{bmatrix} 4\\10\\16\end{bmatrix}, \begin{bmatrix} 3\\9\\15\end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^3$	2	$\begin{bmatrix} 4\\10\\16\end{bmatrix}, \begin{bmatrix} 3\\9\\15\end{bmatrix}, \begin{bmatrix} 6\\15\\24\end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 3/2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^3$	2
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 4 \\ 10 \end{bmatrix}, \begin{bmatrix} 3 \\ 9 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^2$	2	$\begin{bmatrix} 4\\10 \end{bmatrix}, \begin{bmatrix} 3\\9 \end{bmatrix}, \begin{bmatrix} 6\\15 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 3/2 \\ 0 & 1 & 0 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^2$	2
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \end{bmatrix}$	$\begin{bmatrix} 4\\16 \end{bmatrix}, \begin{bmatrix} 3\\12 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^2$	1	$\begin{bmatrix} 4 \\ 16 \end{bmatrix}, \begin{bmatrix} 3 \\ 12 \end{bmatrix}, \begin{bmatrix} 6 \\ 24 \end{bmatrix}$	$\begin{bmatrix} 4 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^2$	1
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \\ 1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 4\\10\\7\\2 \end{bmatrix}, \begin{bmatrix} 3\\12\\15\\1 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^4$	2	$\begin{bmatrix} 4\\10\\7\\2 \end{bmatrix}, \begin{bmatrix} 3\\12\\15\\15\\1 \end{bmatrix}, \begin{bmatrix} 6\\15\\15\\2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^4$	3
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 7 & 14 & 21 \\ 3 & 6 & 9 \end{bmatrix}$	$\begin{bmatrix} 4\\16\\28\\12\end{bmatrix}, \begin{bmatrix} 3\\12\\21\\9\end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^4$	1	$\begin{bmatrix} 4\\16\\28\\12\\12\end{bmatrix},\begin{bmatrix} 3\\12\\21\\42\\9\end{bmatrix},\begin{bmatrix} 6\\24\\42\\18\end{bmatrix}$	$\begin{bmatrix} 1 & 3/4 & 6/4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	$T: \mathbb{R}^3 \to \mathbb{R}^4$	1

Some examples of how dim *H* and dim *T*(*H*) are related and how the matrix *A*, where $T(\vec{v}) = A\vec{v}$, affects this.

So depending on A in $T(\vec{v}) = A\vec{v}$, dim T(H) may be smaller than dim H, but can never be larger. That is, dim $T(H) \le \dim H$.

It turns out that $\dim T(H) = \dim H$ is only possible if the columns of A are linearly independent (which also means T is a 1-to-1 function).