Most important ideas:

- Nullspaces and column spaces.
- Compare and contrast the two spaces: page 204.

Describe the nullspace of a matrix *A*: The collection of all vectors \vec{x} such that $A\vec{x} = \vec{0}$.

That is:
$$Nul A = \{\vec{x} : A\vec{x} = 0\}$$

Consider $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix}$.
Is $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ in the nullspace of A? Check: $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 18 \\ 36 \\ 54 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, so \vec{v}_1 is not in *Nul A*.
Is $\vec{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \\ -3 \end{bmatrix}$ in the nullspace of A? Check: $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ 2 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, so \vec{v}_2 is in *Nul A*.

Is it easy to check whether or not a vector \vec{v} is in Nul A? Yes. Just see if $A\vec{v} = \vec{0}$. Find another vector in the nullspace of A, or find the entire nullspace of A. This is more difficult.

$$\begin{bmatrix} 1 & 2 & 3 & 1 & | & 0 \\ 4 & 5 & 6 & 1 & | & 0 \\ 7 & 8 & 9 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -1 & | & 0 \\ 0 & 1 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix} \text{ so } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_3 + x_4 \\ -2x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$
Notice that the vector $\vec{v}_2 = \begin{bmatrix} -1 \\ -1 \\ 2 \\ -3 \end{bmatrix}$ in Nul A from above is of this form:
$$\begin{bmatrix} -1 \\ -1 \\ 2 \\ -3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + (-3) \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$

Notice that the nullspace of 3×4 matrix A is a subspace of \mathbf{R}^4 since this is the size of the vectors \vec{x} by which we multiply A to get $\vec{0}$. That is, in $A\vec{x} = \vec{0}$, \vec{x} is from R^4 .

In general for a matrix A whose columns are $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$, that is, $A = [\vec{a}_1 \vec{a}_2 \cdots \vec{a}_n]$:

Describe the column space of a matrix *A*: The set of all vectors that can be built out of the columns of *A*.

That is: $\vec{b} \in Col A$ means $\vec{b} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_n \vec{a}_n$ for some x_1, x_2, \dots, x_n .

That is: $\vec{b} \in Col A$ means $\vec{b} = A\vec{x}$ for some \vec{x} . That is: $Col A = \{\vec{b} : \vec{b} = A\vec{x} \text{ for some } \vec{x}\}$.

Example: Describe/find the column space of
$$A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix}$$
. Col A consists of all vectors
of the form $x_1 \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, for some x_1, x_2, x_3, x_4 , that is,
of the form $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$, that is, of the form $A\vec{x}$ for some \vec{x} .

Is $\vec{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$ in *Col A*? That is harder to check. We want to know if there are x_1, x_2, x_3, x_4

such that
$$x_1 \begin{bmatrix} 1\\4\\7 \end{bmatrix} + x_2 \begin{bmatrix} 2\\5\\8 \end{bmatrix} + x_3 \begin{bmatrix} 3\\6\\9 \end{bmatrix} + x_4 \begin{bmatrix} 1\\1\\1 \end{bmatrix} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$$
, that is, such that $\begin{bmatrix} 1 & 2 & 3 & 1\\4 & 5 & 6 & 1\\7 & 8 & 9 & 1 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix} = \begin{bmatrix} 1\\0\\2 \end{bmatrix}$

Let's see: $\begin{bmatrix} 1 & 2 & 3 & 1 & | & 1 \\ 4 & 5 & 6 & 1 & | & 0 \\ 7 & 8 & 9 & 1 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -1 & | & 0 \\ 0 & 1 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & | & 1 \end{bmatrix}$, which means there is no solution, so $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$

cannot be built using the columns of A, that is, it is not in Col A.

Is
$$\vec{b}_2 = \begin{bmatrix} -1 \\ 5 \\ 11 \end{bmatrix}$$
 in the column space of *A*?

Let's see: $\begin{bmatrix} 1 & 2 & 3 & 1 & | & -1 \\ 4 & 5 & 6 & 1 & | & 5 \\ 7 & 8 & 9 & 1 & | & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -1 & | & 5 \\ 0 & 1 & 2 & 1 & | & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, from which we can see there are

actually infinite solutions (infinite ways to build \vec{b}_2 using the columns of A:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 + x_3 + x_4 \\ -3 - 2x_3 - x_4 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}.$$

(Notice that this is the sum of a particular solution and the homogeneous solutions.)

For example,
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ 0 \\ 0 \end{bmatrix}$$
. Notice that $\begin{bmatrix} -1 \\ 5 \\ 11 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix} - 3 \begin{bmatrix} 2 \\ 5 \\ 8 \end{bmatrix} + 0 \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

It is easy to find vectors that are in the column space: just decide how much of each column of A you want in building your vector. But it is more difficult to check whether \vec{b}_1 and \vec{b}_2 are in the *Col A*. Notice that **the column space of** 3×4 **matrix** A **is a subspace of** R^3 , since the column space is the collection of vectors that can be built (as linear combinations) of the columns of A, which are from R^3 .

Some vectors
$$\vec{b}$$
 in column space of $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 4 & 5 & 6 & 1 \\ 7 & 8 & 9 & 1 \end{bmatrix}$: $\begin{bmatrix} -1 \\ 5 \\ 11 \end{bmatrix}, \begin{bmatrix} 7 \\ 16 \\ 25 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \dots \begin{bmatrix} 5 \\ -3 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \dots$

Which is easier to find, a vector in the nullspace or the column space? See items 2 and 3 on page 204.

Which is easier to check, that a vector is in the nullspace or that it is in the column space? See items 5 and 6 on page 204.