Most important ideas:

- How A or B being "bad" is related to AB being "bad."
- Various properties listed in Theorems 3 6.
- The role that elementary matrices play in finding determinants.
- You can use Excel or online tools to compute determinants.

Example 1: Reminder of various properties of determinants.

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 1 & 2 \\ 0 & -3 & 1 \end{bmatrix}, AB = \begin{bmatrix} -3 & -5 & 7 \\ -6 & -5 & 16 \\ -1 & 3 & 2 \end{bmatrix}, A^4 = \begin{bmatrix} 669 & 870 & 945 \\ 1740 & 2265 & 2466 \\ 315 & 411 & 450 \end{bmatrix}$ det $A = 1 \begin{vmatrix} 5 & 6 \\ 1 & 0 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 1 & 0 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 1 & 1 \end{vmatrix} = 3$ $\det A^{T} = \begin{vmatrix} 1 & 4 & 1 \\ 2 & 5 & 1 \\ 3 & 6 & 0 \end{vmatrix} = 3$ $\det A^{-1} = \begin{vmatrix} -2 & 1 & -1 \\ 2 & -1 & 2 \\ -1/3 & 1/3 & -1 \end{vmatrix} = 1/3$ $\det B = 11$ $\det AB = 33 = \det A \cdot \det B$ $\det A^4 = 81$ $\det A^T = \det A$ Reminders: $\det A^{-1} = \frac{1}{\det 4}$ $\det AB = \det A \cdot \det B$ $det(A + B) \neq det A + det B$ $\det(A^k) = (\det A)^k$ Multiply top row (or any row or column) of A by 10:

 $\begin{vmatrix} 10 & 20 & 30 \\ 4 & 5 & 6 \\ 1 & 1 & 0 \end{vmatrix} = 10 \begin{vmatrix} 5 & 6 \\ 1 & 0 \end{vmatrix} - 20 \begin{vmatrix} 4 & 6 \\ 1 & 0 \end{vmatrix} + 30 \begin{vmatrix} 4 & 5 \\ 1 & 1 \end{vmatrix} = 30$ (compare this to finding det *A* above)

Multiply entire matrix by 10:

$$\det 10A = \begin{vmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \\ 10 & 10 & 0 \end{vmatrix} = \mathbf{10} \begin{vmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \\ 1 & 1 & 0 \end{vmatrix} = \mathbf{10^2} \begin{vmatrix} 10 & 20 & 30 \\ 4 & 5 & 6 \\ 1 & 1 & 0 \end{vmatrix} = \mathbf{10^3} \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 1 & 0 \end{vmatrix} = \mathbf{10^3} \cdot \det A$$

Operation	Examples	Determinant	Inverses	Determinant
Swap rows	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	-1, -1	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	-1, -1
Multiply a row by <i>k</i>	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -3 \end{bmatrix}$	5, -3	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1/3 \end{bmatrix}$	$\frac{1}{5}, -\frac{1}{3}$
Add k times one row to another	$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$	1, 1	$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$	1, 1

If $E_n \cdots E_2 E_1 A = U$, then $A = (E_n \cdots E_2 E_1)^{-1} U = E_1^{-1} E_2^{-1} \cdots E_n^{-1} U$ and $\det A = \det E_1^{-1} \cdot \det E_2^{-1} \cdot \cdots \cdot \det E_n^{-1} \cdot \det U$

where $\det U$ is the product of the values along the diagonal, assuming U is upper triangular.

(Also recall that $(E_n \cdots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \cdots E_n^{-1}$ would be the lower triangular matrix L in the LU-factorization A = LU.)

Example: Find the determinant of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$.

Next matrix	Next step	Elementary matrix	Inverse	Det. of inverse
$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$	R2 – 4R1	$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\det E_1^{-1}=1$
$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 7 & 8 & 0 \end{bmatrix}$	<i>R</i> 3 – 7 <i>R</i> 1	$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix}$	$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 7 & 0 & 1 \end{bmatrix}$	$\det E_2^{-1}=1$
$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -21 \end{bmatrix}$	R3 - 2R2	$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix}$	$E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix}$	$\det E_3^{-1}=1$
$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & -9 \end{bmatrix}$	Done: This is <i>U</i>			

Then det $A = \det E_1^{-1} \cdot \det E_2^{-1} \cdot \det E_3^{-1} \cdot \det U = \mathbf{1} \cdot \mathbf{1} \cdot \mathbf{1} \cdot (\mathbf{1})(-3)(-9) = \mathbf{27}$.

det $A = \det E_1^{-1} \cdot \det E_2^{-1} \cdot \det E_3^{-1} \cdot \det U$ is not an efficient way to compute the determinant of a matrix, but it is a useful theoretical result (but it is faster than the co-factor expansion—see Numerical Note on page 167).

Finally, note that if $L = E_1^{-1}E_2^{-1}E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}$, then A = LU: $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & -9 \end{bmatrix}$. (BTW, why is L lower triangular?)