Most important ideas:

- The determinant det A of a square matrix:
 - det $A \neq 0$ means the matrix has an inverse (and all other "good" things are also true).
 - \circ det A = 0 means the matrix has no inverse (and all other "bad" things are also true).
 - \circ det *A* gives us other information about a matrix, which we will learn later.
- Definition of how to find the determinant of any size matrix in Theorem 1 on page 166.
- A simple formula for the determinant of a 3×3 matrix precedes homework problems 15 18.
- The determinant of a triangular (lower or upper) matrix is the product of the diagonal entries.

Recall for $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the determinant of A is ad - bc, and that $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. So we see that:

 $\det A \neq 0$ means that A is invertible, i.e. has an inverse (and is sometimes called "nonsingular"). $\det A = 0$ means that A is not invertible (and is sometimes called "singular").

This is true in general for any size (square) matrix.

Another notation for determinant:
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
.

For $m \times n$ matrix A, cofactor A_{ij} is the $m - 1 \times n - 1$ submatrix of A without row i and column j.

Example 1: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $A_{23} = \begin{bmatrix} 1 & 2 \\ 7 & 8 \end{bmatrix}$, $A_{31} = \begin{bmatrix} 2 & 3 \\ 5 & 6 \end{bmatrix}$

How to find the determinant of a larger than 2×2 matrix? Theorem 1 on page 166.

Example 2:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.
det $A = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 4 \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} + 7 \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 1(45 - 48) - 4(18 - 24) + 7(12 - 15) = 0$.

Part of this is the pattern of + and -, starting with + at the top, left hand position. For a 3 × 3 matrix: $\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$.

You can do this cofactor expansion along any row or column. For example, along column 2:

 $\det A = -2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 5 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} - 8 \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 0.$

Example 3: For
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$
, det $A = 24$.

Observation: the determinant of an upper (or lower) triangular matrix is the product of the values one the diagonal. In the above example, the determinant is simply $1 \cdot 4 \cdot 6 = 24$.

Example 4: The determinant of the identity matrix I is 1. For example, $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1 \cdot 1 \cdot 1 = 1$.

Operation	Example			Determinant
Swap rows	[0 1 0	1 0 0	0 0 1	-1
Multiply a row by <i>k</i>	[1 0 0	0 k 0	0 0 1	k
Add <i>k</i> times one row to another	[1 k 0	0 1 0	0 0 1	1

Example 5: Determinants of elementary matrices

Example 6: $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}, A^{-1} = \begin{bmatrix} -2 & 3/2 \\ 1 & -1/2 \end{bmatrix}, 5A = \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix}$ $A + B = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix}, AB = \begin{bmatrix} 3 & 4 \\ 7 & 10 \end{bmatrix},$ det A = -2det B = -1det $A^{T} = -2$ det $A^{-1} = -1/2$ det 5A = -50det (A + B) = -6det AB = 2det $A^{-1} = -1/2$ Notice some important properties: det $AB = \det A \cdot \det B$ det $A^{-1} = -1/2$

det $A^{-1} = 1/\det A$ det $A^T = \det A$ det $cA = c^n \det A$ (where A is $n \times n$) det $(A + B) \neq \det A + \det B$