More on the use of elementary matrices

Given =
$$
\begin{bmatrix} 1 & 0 & -2 \ -3 & 1 & 4 \ 2 & -3 & 4 \end{bmatrix}
$$
, use elementary matrices to find $A = LU$ and A^{-1} .

So let's row reduce A into the identity matrix.

1 0 −2 |, i.e. $(E_3E_2E_1)A = U$, so $A = (E_3E_2E_1)^{-1}U$, and First, we have $E_3(E_2(E_1A)) = U =$ $0 \t1 \t -2$ 0 0 2 1 0 0 1 0 0 1 0 0 1 0 0 $L = (E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} =$ −3 1 0 \prod 0 1 0 \prod 0 1 0 $=$ \vert −3 1 0 \vert . 0 0 1 2 0 1 0 −3 1 2 −3 1 1 0 0 $1 \t 0 \t -2$ 1 0 −2 Check that $LU =$ −3 1 0 \prod 0 1 −2 $=$ \vert −3 1 4 $= A$. Notice that L is really just the 2 −3 1 0 0 2 2 −3 4 matrix that describes the opposite of what we did in putting Λ into echelon form. \mathcal{L}

Second, after all steps we have
$$
E_6\left(E_5\left(E_4\left(E_3(E_2(E_1A))\right)\right)\right) = I
$$
, i.e. $(E_6E_5E_4E_3E_2E_1)A = I$, so
\n
$$
A^{-1} = E_6E_5E_4E_3E_2E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ 7/2 & 3/2 & 1/2 \end{bmatrix}.
$$
\nWe could also have computed $A^{-1} = (LU)^{-1} = U^{-1}L^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1/2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 7 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ 7/2 & 3/2 & 1/2 \end{bmatrix}.$

This is a more efficient way to find A^{-1} , as it is much easier to find inverses of upper and lower triangular matrices.