
Math 260 Section 2.4 and 2.5 
 

Most important ideas: 

• Block matrices (also called partitioned matrices) 

• LU decomposition of a matrix 

• Divide and conquer is often a good idea—see Numerical Note on page 120.   
Also see Numerical Note on page 127. 

Example 1:  A diagonal matrix  [
3 0 0
0 −4 0
0 0 0.5

]  has inverse  [
1/3 0 0
0 −1/4 0
0 0   2

]. 

In general, the inverse of a block diagonal matrix   [
𝑨 0 0
0 𝑩 0
0 0 𝑪

] = [
𝑨−𝟏 0 0
0 𝑩−𝟏 0
0 0 𝑪−𝟏

] . 

Example 2:  The inverse of   

[
 
 
 
 
 
𝟏 𝟐 0 0 0 0
𝟑 𝟒 0 0 0 0
0 0 𝟓 0 0 0
0 0 0 𝟎 𝟏 𝟎
0 0 0 𝟏 𝟎 𝟎
0 0 0 𝟎 𝟎 𝟏]

 
 
 
 
 

   is     

[
 
 
 
 
 
−𝟐 𝟏 0 0 0 0
𝟑/𝟐 −𝟏 0 0 0 0
 0 0 𝟏/𝟓 0 0 0
 0 0 0 𝟎 𝟏 𝟎
 0 0 0 𝟏 𝟎 𝟎
 0 0 0 𝟎 𝟎 𝟏]

 
 
 
 
 

 . 

Many real-life matrices are block diagonal, with each block being the same size.  (And we can 
partition the matrix into its blocks to make it easier to work with.) 

Problem 1:  Given the blocks of a matrix 𝐴, 𝐵, 𝐶, find 𝑋, 𝑌, 𝑍 so that  [
𝐴 𝐵
𝐶 0

] [
𝐼 0
𝑋 𝑌

] = [
0 𝐼
𝑍 0

]. 

What we need to have happen and the result of each (𝐴, 𝐵, 𝐶, 𝐼, 𝑋, 𝑌, 𝑍 and 0 are all matrices): 

𝑨𝑰 + 𝑩𝑿 = 𝟎 ⇒ 𝑩𝑿 = −𝑨 ⇒ 𝑿 = −𝑩−𝟏𝑨 
𝑨𝟎 + 𝑩𝒀 = 𝑰 ⇒ 𝒀 = 𝑩−𝟏 
𝑪𝑰 + 𝟎𝑿 = 𝒁 ⇒ 𝒁 = 𝑪 
𝑪𝟎 + 𝟎𝒀 = 𝟎  (which tells us nothing) 

Example of Problem 1:  [
1 2 3 7 2
4 5 6 3 1
2 0 3 0 0

]

[
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
? ? ? ? ?
? ? ? ? ?]

 
 
 
 

= [
0 0 0 1 0
0 0 0 0 1
? ? ? 0 0

] 

So for this problem  𝑨 = [
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔

] , 𝑩 = [
𝟕 𝟐
𝟑 𝟏

] , 𝑪 = [𝟐 𝟎 𝟑].   

Then we find that the bottom left part of the second matrix is 

𝑿 = −[
𝟕 𝟐
𝟑 𝟏

]
−𝟏

[
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔

] = [
   𝟕    𝟖    𝟗
−𝟐𝟓 −𝟐𝟗 −𝟑𝟑

] , 

the bottom right part of the second matrix is  𝒀 = [
𝟕 𝟐
𝟑 𝟏

]
−𝟏

= [
𝟏 −𝟐

−𝟑 𝟕
] ,  

the bottom left part of the third matrix is  𝒁 = 𝑪 = [𝟐 𝟎 𝟑] . 

You can check that   [
𝟏 𝟐 𝟑 𝟕 𝟐
𝟒 𝟓 𝟔 𝟑 𝟏
𝟐 𝟎 𝟑 𝟎 𝟎

]

[
 
 
 
 

𝟏 𝟎 𝟎 𝟎 𝟎
𝟎 𝟏 𝟎 𝟎 𝟎
𝟎 𝟎 𝟏 𝟎 𝟎
𝟕 𝟖 𝟗 𝟏 −𝟐

−𝟐𝟓 −𝟐𝟗 −𝟑𝟑 −𝟑 𝟕]
 
 
 
 

= [
𝟎 𝟎 𝟎 𝟏 𝟎
𝟎 𝟎 𝟎 𝟎 𝟏
𝟐 𝟎 𝟑 𝟎 𝟎

] 

Unlike this example, the blocks in many (most?) real-life matrices are square and of the same size. 
Question:  For which of the following systems of equations is it easier to find a solution?  Why? 



2𝑥1 + 2𝑥2 + 3𝑥3 = 7
5𝑥1 − 2𝑥2 + 4𝑥3 = 0
3𝑥1 +  𝑥2 + 5𝑥3 = 10

     or    

2𝑥1 + 2𝑥2 + 3𝑥3 = 7
−2𝑥2 + 4𝑥3 = 10

5𝑥3 = 15
     or    

2𝑥1 = −4 
5𝑥1 − 2𝑥2 = −12
3𝑥1 +  𝑥2 + 5𝑥3 = 10

 

Observation:  upper triangular and lower triangular systems are easier to solve. 

What if we could transform  𝐴�⃗� = �⃗⃗�  into an upper or lower triangular system (or, as it turns out, 
a combination of both)?  Suppose we could somehow factor  𝐴  into a lower triangular (with zeros 
above the diagonal) matrix  𝐿  and an upper triangular (with zeros below the diagonal) matrix  𝑈:  

𝐴 = 𝐿𝑈.  If we had  𝐿𝑈�⃗� = �⃗⃗�, where 𝐿 is lower triangular and 𝑈 is upper triangular, then we 
could do the following: 

Let  �⃗⃗⃗� = 𝑼�⃗⃗⃗�.  Then  𝑳𝑼�⃗⃗⃗� = �⃗⃗⃗�  is the same as  𝑳�⃗⃗⃗� = �⃗⃗⃗�.  So solve for  �⃗⃗⃗�  in  𝑳�⃗⃗⃗� = �⃗⃗⃗�, then solve for  �⃗⃗⃗�  in  𝑼�⃗⃗⃗� = �⃗⃗⃗�. 

Problem 2:  Suppose 𝐴 = [
2 −1 1
4 1 2

−2 1 0
] = [

1 0 0
2 1 0

−1 0 1
] [

2 −1 1
0 3 0
0 0 1

] = 𝐿𝑈 and where �⃗⃗� = [
6

15
−3

], 

we want to solve for  �⃗�  in  𝐴�⃗� = �⃗⃗�.  We first solve for  �⃗�  in  𝐿�⃗� = �⃗⃗�  using forward substitution, 
working from the top equation  𝑦1 = 6  down to the bottom equation:   

[
𝟏 𝟎 𝟎
𝟐 𝟏 𝟎

−𝟏 𝟎 𝟏
] [

𝒚𝟏

𝒚𝟐

𝒚𝟑

] = [
𝟔

𝟏𝟓
−𝟑

],  that is,  
  𝒚𝟏 =    𝟔

𝟐𝒚𝟏 + 𝒚𝟐 =  𝟏𝟓  ⇒  𝒚𝟐 = 𝟏𝟓 − 𝟐(𝟔) = 𝟑
−𝒚𝟏          + 𝒚𝟑 = −𝟑  ⇒  𝒚𝟑 = −𝟑 + 𝟔     = 𝟑

   

We then solve for  �⃗�  in  𝑈�⃗� = �⃗�  using backward substitution, working from the bottom equation 
𝑥3 = 3  up to the top equation: 

[
𝟐 −𝟏 𝟏
𝟎 𝟑 𝟎
𝟎 𝟎 𝟏

] [

𝒙𝟏

𝒙𝟐

𝒙𝟑

] = [
𝟔
𝟑
𝟑
], that is,  

𝟐𝒙𝟏 − 𝒙𝟐 + 𝒙𝟑 = 𝟔 ⇒ 𝒙𝟏 =
𝟏

𝟐
(𝟔 + 𝟏 − 𝟑) = 𝟐

          𝟑𝒙𝟐 = 𝟑 ⇒ 𝒙𝟐 = 𝟏
                      𝒙𝟑 = 𝟑

 

So how do we find  𝐿  and  𝑈  for a given matrix  𝐴?  We can transform via elementary row 
operations (which will do using elementary matrices—woo hoo!)  𝐴  into an upper triangular 
matrix  𝐸𝑛 ⋯𝐸3𝐸2𝐸1𝐴 = 𝑈, where  𝑈  is simply the echelon form of  𝐴, and where 

𝐿 = (𝐸𝑛 ⋯𝐸3𝐸2𝐸1)
−1 = 𝐸1

−1𝐸2
−1𝐸3

−1 ⋯𝐸𝑛
−1. 

Then we have  𝐴 = 𝐿𝑈, where  𝐿  is lower triangular. 
 

Problem 3:  Transform  𝐴  from Problem 2 into an upper triangular matrix (its echelon form), and 
in the process find the  𝐿𝑈  factorization of 𝐴. 

First we add  −𝟐  times row 1 to row 2:   [
𝟏 𝟎 𝟎

−𝟐 𝟏 𝟎
𝟎 𝟎 𝟏

] [
𝟐 −𝟏 𝟏
𝟒 𝟏 𝟐

−𝟐 𝟏 𝟎
] = [

𝟐 −𝟏 𝟏
𝟎 𝟑 𝟎

−𝟐 𝟏 𝟎
] 

Next we add  1  times row 1 to row 3:     [
   𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟏 𝟎 𝟏

] [
𝟐 −𝟏 𝟏
𝟎 𝟑 𝟎

−𝟐 𝟏 𝟎
] = [

   𝟐 −𝟏 𝟏
𝟎 𝟑 𝟎
𝟎 𝟎 𝟏

] 

So in all we have  [
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟏 𝟎 𝟏

] [
𝟏 𝟎 𝟎

−𝟐 𝟏 𝟎
𝟎 𝟎 𝟏

] [
𝟐 −𝟏 𝟏
𝟒 𝟏 𝟐

−𝟐 𝟏 𝟎
] = [

𝟐 −𝟏 𝟏
𝟎 𝟑 𝟎
𝟎 𝟎 𝟏

],  that is, 𝑬𝟐𝑬𝟏𝑨 = 𝑼. 

So  𝑨 = (𝑬𝟐𝑬𝟏)
−𝟏𝑼 = 𝑳𝑼  where  𝑳 = (𝑬𝟐𝑬𝟏)

−𝟏 = 𝑬𝟏
−𝟏𝑬𝟐

−𝟏 = [
𝟏 𝟎 𝟎
𝟐 𝟏 𝟎
𝟎 𝟎 𝟏

] [
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎

−𝟏 𝟎 𝟏
] = [

𝟏 𝟎 𝟎
𝟐 𝟏 𝟎

−𝟏 𝟎 𝟏
]. 

Note:  the product of lower triangular matrices is lower triangular (and similarly for upper 
triangular).  It turns out mathematicians use the  𝐿𝑈  factorization of  𝐴  to do/find many of the 
things to/about 𝐴 that we might want to do/find. 


