Most important ideas:

- Recall why we like the identity matrix.
- Matrix inverse: what are they, how are they useful (Theorem 5, page 104), how to find them (Theorem 7 on page 107 and Algorithm on page 108), and do all matrices have inverses, and what does it mean if a matrix doesn't have an inverse?
- Formula for a 2×2 matrix on page 103 in Theorem 4.
- Rules/properties of inverses in Theorem 6 on page 105.
- Elementary matrices.
- Real life: see Numerical Note on page 109.

First, how is a matrix inverse is useful, and why do we like the identity matrix so gosh darn much?

Compare solving for number x in ax = b to solving for vector \vec{x} in $A\vec{x} = \vec{b}$:

$a^{-1}ax = a^{-1}b \qquad A^{-1}A\vec{x} = A^{-1}$	
	b
$1x = a^{-1}b \qquad I\vec{x} = A^{-1}$	b
$x = a^{-1}b \qquad \qquad \vec{x} = A^{-1}$	b

Problem 1: Find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and use it to find the solution to $\begin{array}{c} x_1 + 2x_2 = 5 \\ 3x_1 + 4x_2 = 6 \end{array}$ $A^{-1} = \frac{1}{1 \cdot 4 - 2 \cdot 3} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$. (Notice that $A^{-1}A = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$.) Then $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A^{-1}\vec{b} = \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} -4 \\ 9/2 \end{bmatrix}$. Check that $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -4 \\ 9/2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Yup!

For larger than 2×2 matrices, how do you find the inverse? We'll answer this for now by still considering a 2×2 case. Recall that we can solve $A\vec{x} = \vec{b}$ for more than one right hand side \vec{b} . Let's solve for \vec{x} in $A\vec{x} = \vec{b}$ where $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ with two right hand sides $\vec{b}_1 = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, $\vec{b}_2 = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 5 & -2 \end{bmatrix} R2 + (-3)R1 \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 4 \end{bmatrix} - \frac{1}{2}R2 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \frac{1}{2}R2 \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} - \frac{1}{2}R2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} - \frac{1}{2}R2 \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \frac{1}{2}R2 \begin{bmatrix} 3 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 5 & -2 \end{bmatrix}$. So : $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}$, that is $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 5 & -2 \end{bmatrix}$. We could repeat this, but now with the right hand sides of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$: $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 3/2 & -1/2 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 3/2 & -1/2 \end{bmatrix}$

So:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 \\ 3/2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1/2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, that is $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 3/2 & -1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

That is, we've just discovered that the inverse of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ is $\begin{bmatrix} -1 & -1/2 \end{bmatrix}$.

In general we find A^{-1} by doing the row reduction $[A | I] \sim [I | A^{-1}]$.

Problem 2: Find the inverse of
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
. We will do $\begin{bmatrix} A \mid I \end{bmatrix} \sim \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$:

$$\begin{bmatrix} 1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 1 & 0 & 1 \mid 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & -1 & 1 \mid -1 & 0 & 1 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 0 & -1 \mid 1 & -1 & 0 \\ 0 & 1 & 1 \mid 0 & 1 & 0 \\ 0 & 0 & 1 \mid -1/2 & 1/2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \mid 1/2 & -1/2 & 1/2 \\ 0 & 1 & 0 \mid 1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 \mid -1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
. Yup!

Problem 3: Find a 2×2 matrix that has no inverse, and write the system of equations (2 equations, 2 unknowns) corresponding to it. Here is one. Try to come up with your own.

 $A = \begin{bmatrix} 2 & 5 \\ -6 & -15 \end{bmatrix}$ which has corresponding equations $\begin{array}{c} 2x_1 + 5x_2 = some \ number \\ -6x_1 - 15x_2 = some \ number \end{array}$

These equations with two (of many possible) right hand sides:

 $2x_1 + 5x_2 = 1$ $-6x_1 - 15x_2 = 2$ which has no solution, or $2x_1 + 5x_2 = 3$ $-6x_1 - 15x_2 = -9$ which has infinite solutions.

In general, if A has an inverse, then $A\vec{x} = \vec{b}$ has **1** solution: $\vec{x} = A^{-1}\vec{b}$

If A does not have an inverse, then $A\vec{x} = \vec{b}$ has either **0** or ∞ solutions, depending on what \vec{b} is.

Recall elementary matrices—a few examples:

Row	Elementary
operation	matrix
Add 4 · Row 1	$E_1 = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$
to Row 2	$E_1 = \begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$
Swap Row 1	F [0 1]
and Row 2	$E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Multiply	<u> </u>
Row 1 by 5	$E_3 = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$

The elementary matrices that change A to I give us the inverse of A.

If $E_n \cdots E_2 E_1 A = I$, then A^{-1} must simply be $E_n \cdots E_2 E_1$ since $E_n \cdots E_2 E_1$ times A is I. (This is what it means to be the inverse of A!)

Problem 4: Find inverse of $A = \begin{bmatrix} 2 & 2 \\ 3 & 2 \end{bmatrix}$. So what do we need to do to transform A to I?

Next action	Elementary Matrix	Product and result
$\frac{1}{2}R1$	$E_1 = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix}$	$E_1A = \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$
R2-3R1	$E_2 = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix}$	$E_2(E_1A) = \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$
-R2	$E_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	$E_{3}(E_{2}E_{1}A) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
R1 – R2	$E_4 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$	$E_4(E_3E_2E_1A) = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \stackrel{\checkmark}{=} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

So $A^{-1} = E_4 E_3 E_2 E_1 = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 3/2 & -1 \end{bmatrix}$. (Check!)

The fact that A^{-1} is the product of elementary matrices for transforming A into I is very useful theoretically, but not for actually computing the inverse.