Most important ideas:

- There is not a lot new in this section, but we try to understand things a bit more deeply and we make some connections in this section.
- Every function $T(\vec{x})$ that is linear (see page 71) has a matrix A for which $T(\vec{x}) = A\vec{x}$.
- As we saw in section 1.8, we can think of matrix A "doing" something to vector \vec{x} , sometimes described as "A acting on \vec{x} ", like we do functions: $T(\vec{x}) = A\vec{x}$ (the function T is a *linear transformation*, a special type of function).
- There is a geometric interpretation of what a 2 \times 2 matrix A does to a vector \vec{x} when you multiply $A\vec{x}$. See pages 72 75 for several examples.
- The function $T(\vec{x}) = A\vec{x}$ is sometimes referred to as a "mapping." That is, where A is of size $m \times n$, we "map" vector \vec{x} from R^n to a vector $A\vec{x}$ in R^m . See the final page of this handout.
- Theorems 11 and 12 on pages 76 and 77 are important.
- Notation: vectors \vec{e}_1, \vec{e}_2 , etc. are the columns of the identity matrix (see Book Example 1).

It turns out that any linear transformation $T(\vec{x})$ can be written with a matrix $T(\vec{x}) = A\vec{x}$. Given *T*, how do we find *A*, which is the standard matrix for the linear transformation *T*?

Suppose we are working with vectors in R^3 . Let $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Then we can write $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3$, and

 $T(\vec{x}) = T(x_1\vec{e}_1 + x_2\vec{e}_2 + x_3\vec{e}_3) = x_1T(\vec{e}_1) + x_2T(\vec{e}_2) + x_3T(\vec{e}_3) = [T(\vec{e}_1) \ T(\vec{e}_2) \ T(\vec{e}_3)] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = A\vec{x}.$

This is Theorem 10 on page 71.

So where $T(\vec{x}) = A\vec{x}$, the *i*th column of A is simply $T(\vec{e}_i)$.

Problem 1: Suppose that for $T: \mathbb{R}^3 \to \mathbb{R}^2$ we have (with some randomly made up numbers)

$$T(x_1, x_2, x_3) = (2x_1 - 3x_2 + 4x_3, 5x_1 - 6x_3).$$

Find A so that $T(\vec{x}) = A\vec{x}$. (Homework problems 1 and 2 are like this. Problem 3 and 7 are also similar, but a bit trickier.)

So I'm trying to find the matrix
$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix}$$
 such that $\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 + 4x_3 \\ 5x_1 & -6x_3 \end{bmatrix}$.

So I can see what the size of A is now, and I'll find the columns one at a time:

Column 1 is
$$T(\vec{e}_1) = T(1,0,0) = (2,5)$$
.
Column 2 is $T(\vec{e}_2) = T(0,1,0) = (-3,0)$.
Column 3 is $T(\vec{e}_3) = T(0,0,1) = (4,-6)$.
So $A = \begin{bmatrix} 2 & -3 & 4 \\ 5 & 0 & -6 \end{bmatrix}$. Check: $\begin{bmatrix} 2 & -3 & 4 \\ 5 & 0 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 + 4x_3 \\ 5x_1 & -6x_3 \end{bmatrix}$.

It is also easy enough to find the standard matrix A by inspection. The fact that the *i*th column of A is $T(\vec{e}_i)$ is more useful as a *theoretical* result rather than to actually help us find A.

Problem 2: Find the standard matrix for $T: \mathbb{R}^2 \to \mathbb{R}^2$ where T rotates points (about the origin) through $-\pi/3$ radians, that is, 60° clockwise.

Rotating the point (1,0) by -60° is $(\frac{1}{2}, -\frac{\sqrt{3}}{2})$. That is, $T(\vec{e}_1) = \begin{bmatrix} \frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}$. Rotating the point (0,1) by -60° is $(\frac{\sqrt{3}}{2}, \frac{1}{2})$. That is, $T(\vec{e}_2) = \begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$. So the standard matrix is $[T(\vec{e}_1) \ T(\vec{e}_2)] = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$.

Problem 3: Find the standard matrix for $T: \mathbb{R}^2 \to \mathbb{R}^2$ where T first rotates points through $-\pi/3$ radians, then reflects points through the *y*-axis.

Rotating (1,0) by -60° is $(\frac{1}{2}, -\frac{\sqrt{3}}{2})$, then reflecting across the y-axis is $(-\frac{1}{2}, -\frac{\sqrt{3}}{2})$, so $T(\vec{e}_1) = \begin{bmatrix} -\frac{1}{2} \\ -\frac{\sqrt{3}}{2} \end{bmatrix}$.

Rotating (0, 1) by -60° is $(\frac{\sqrt{3}}{2}, \frac{1}{2})$, then reflecting across the *y*-axis is $(-\frac{\sqrt{3}}{2}, \frac{1}{2})$, so $T(\vec{e}_2) = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$.

So the standard matrix is $[T(\vec{e}_1) \ T(\vec{e}_2)] = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$.

Or I could find the standard matrix for each part of the process:

$$A_{1} = \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$
 (found above in Problem 2) rotates by -60° .

 $A_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, since reflecting (1,0) across the y-axis is (-1,0) and reflecting (0,1) across the y-axis is still (0,1). Then the standard matrix for rotating then reflecting is

$$A_{2}A_{1} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}.$$

Why is it A_2A_1 rather than A_1A_2 ?

Because when a matrix does something to ("operates on") a vector, it is multiplying that vector on the left: $A_2(A_1\vec{v}) = A_2A_1\vec{v}$, so the transformation matrix is A_2A_1 .

See more examples in Book on pages 73 – 75.

Reminder of definition of linear independence: Suppose $A = \begin{bmatrix} \vec{a}_1 \cdots \vec{a}_n \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. The columns of A are linearly independent means $x_1\vec{a}_1 + \cdots + x_n\vec{a}_n = \vec{0}$ only if $x_1 = \cdots = x_n = 0$. In other words, $A\vec{x} = \vec{0}$ only if $\vec{x} = \vec{0}$.

Problem 4: Consider $A\vec{x} = \vec{b}$. Suppose A is 2×3 . What are the dimensions of \vec{x} and \vec{b} ? $\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} * \\ * \\ * \end{bmatrix} = \begin{bmatrix} * \\ * \end{bmatrix}$ so \vec{x} is 3×1 and \vec{b} is 2×1 .

Suppose that $A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$.

Then the linear transformation $T(\vec{x}) = A\vec{x}$ maps the vector $\vec{x} = \begin{bmatrix} 7\\8\\9 \end{bmatrix}$ to the vector:

$$\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 8 \begin{bmatrix} 3 \\ 4 \end{bmatrix} + 9 \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 76 \\ 100 \end{bmatrix}$$

So we see that the vector to which \vec{x} is mapped by $T(\vec{x}) = A\vec{x}$ is simply the vector that is built out of the columns of A using the values of \vec{x} as the weights for the columns.

Let's generalize from Problem 4 a bit. Suppose $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$.

Remember that $A\vec{x} = \vec{b}$ means $x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3 = \vec{b}$. That is, \vec{b} can be built out of the columns of A, where $\vec{x} = (x_1, x_2, x_3)$ tell us how to build \vec{b} out of those columns.

Two questions we sometimes ask about (the columns of) matrix A:

Question 1: Do the columns of A span R^2 ? In "function talk," is linear transformation $T(\vec{x}) = A\vec{x}$ onto?

That is: can every vector \vec{b} in R^2 be built $\vec{b} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$?

That is: for each \vec{b} in R^2 , is there an \vec{x} such that $A\vec{x} = \vec{b}$?

Question 2: Are the columns of *A* linearly independent? In "function talk," is the linear transformation $T(\vec{x}) = A\vec{x}$ 1-to-1? See the following discussion.

Recall (from Section 1.7) that:

The columns of matrix A are linearly independent if and only if $A\vec{x} = \vec{0}$ only for $\vec{x} = \vec{0}$.

And since $T(\vec{x}) = A\vec{x}$, we can thus say:

The columns of matrix A are linearly independent if and only if $T(\vec{x}) = \vec{0}$ only for $\vec{x} = \vec{0}$.

So by Theorem 11 in Section 1.9 we can conclude that:

The columns of matrix A are linearly independent if and only if function *T* is one-to-one.

The point of all of this is to describe in matrix terms (span, linearly independent) ideas that you are presumably already familiar with in function terms (onto, one-to-one).

Remember that $A\vec{x} = \vec{b}$ for some \vec{x} means that \vec{b} can be built out of (as a linear combination of) the columns of A. Compare this table to the table from Section 1.8.

Case	Picture	Example
Columns of A span \mathbb{R}^m . Columns of A are linearly independent.	$ \begin{array}{c} \cdot \vec{x}_1 \\ \cdot \vec{x}_2 \\ \cdot \vec{x}_3 \\ \cdot \vec{x}_4 \end{array} \begin{array}{c} \cdot \vec{b}_1 \\ \cdot \vec{b}_2 \\ \cdot \vec{b}_3 \\ \cdot \vec{b}_4 \end{array} $	$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ Pivot in every row. Pivot in every column.
Columns of A span \mathbb{R}^m . Columns of A are <u>not</u> linearly independent.	$ \begin{array}{c c} \cdot \vec{x}_1 \\ \cdot \vec{x}_2 \\ \cdot \vec{x}_3 \\ \cdot \vec{x}_4 \end{array} \begin{array}{c} \cdot \vec{b}_1 \\ \cdot \vec{b}_2 \\ \cdot \vec{b}_3 \\ \cdot \vec{b}_3 \end{array} $	$A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ Pivot in every row. Pivot <u>not</u> in every column.
Columns of <i>A</i> do <u>not</u> span <i>R^m</i> . Columns of <i>A</i> are linearly independent.	$\begin{array}{c c} \cdot \vec{x}_1 \\ \cdot \vec{x}_2 \\ \cdot \vec{x}_3 \\ \cdot \vec{b}_4 \end{array} \xrightarrow{} \cdot \vec{b}_4 \end{array}$	$A = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ Pivot <u>not</u> in every row. Pivot in every column.
Columns of <i>A</i> do <u>not</u> span <i>R^m</i> . Columns of <i>A</i> are <u>not</u> linearly independent.	$\begin{array}{c c} \cdot \vec{x}_1 \\ \cdot \vec{x}_2 \\ \cdot \vec{x}_3 \end{array} \begin{array}{c} \cdot \vec{b}_1 \\ \cdot \vec{b}_2 \\ \cdot \vec{b}_3 \end{array}$	$A = \begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix}$ $\sim \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}$ Pivot <u>not</u> in every row. Pivot <u>not</u> in every column.