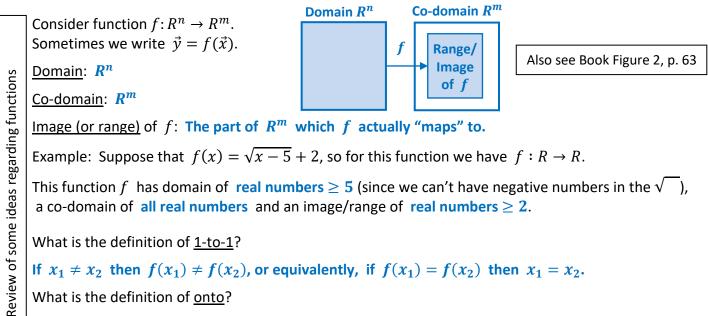
Most important ideas:

- First two pages of this handout: review of ideas from this class and ideas regarding functions.
- Definition of a linear transformation and more info, all on pages 65 66.
- Equations 4 and 5 on page 66 are simply Properties (i) and (ii) from page 65 combined.

Let $m \times n$ matrix $A = [\vec{a}_1 \cdots \vec{a}_n]$ and $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$. Recall that $A\vec{x} = \vec{b}$ means $\vec{b} = x_1\vec{a}_1 + \cdots + x_n\vec{a}_n$, so \vec{b} is the vector we want to build, and x_1, \dots, x_n are the amounts of vectors $\vec{a}_1, \dots, \vec{a}_n$ to build \vec{b} . Review of some ideas regarding matrices and vectors Recall: Suppose $\vec{a}_1, ..., \vec{a}_n$ are vectors from R^m . First, what do m and n mean? n = number of vectors m = size of each vectorFor example, a 3×4 matrix has **4** vectors each of size **3** (i.e. from \mathbb{R}^3). So we are trying to build vectors \vec{b} of size **3** using the **4** vectors that are the columns of matrix A. $\{\vec{a}_1, ..., \vec{a}_n\}$ spans R^m means all vectors in R^m can be built using $\{\vec{a}_1, ..., \vec{a}_n\}$. Good! That is: for each \vec{b} in \mathbb{R}^m , there are weights (x_1, \dots, x_n) such that $\vec{b} = x_1\vec{a}_1 + \dots + x_n\vec{a}_n$. In other words: for each \vec{b} in R^m , there is \vec{x} such that $A\vec{x} = \vec{b}$. $\{\vec{a}_1, \dots, \vec{a}_n\}$ does not span R^m means there are vectors in R^m that can't be built using $\{\vec{a}_1, \dots, \vec{a}_n\}$. Bad! That is: there are vectors \vec{b} in R^m for which there are no weights $(x_1, ..., x_n)$ such that $\vec{b} = x_1 \vec{a}_1 + \cdots x_n \vec{a}_n$. In other words: there are vectors \vec{b} in R^m for which there is no \vec{x} so that $A\vec{x} = \vec{b}$.



Example: Suppose that $f(x) = \sqrt{x-5} + 2$, so for this function we have $f: R \to R$.

This function f has domain of real numbers ≥ 5 (since we can't have negative numbers in the $\sqrt{}$), a co-domain of all real numbers and an image/range of real numbers ≥ 2 .

What is the definition of <u>1-to-1</u>?

If $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$, or equivalently, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

What is the definition of onto?

All elements in the co-domain are in the image.

Note: a function has an inverse only if it is 1-to-1 and it is onto. It's really good to have an inverse!

Four possibilities for a function f(x).

Function	Diagram	Example
Onto 1-to-1	f $\cdot x_1$ $\cdot x_2$ $\cdot x_2$ $\cdot x_3$ $\cdot x_4$ $\cdot y_1$ $\cdot y_2$ $\cdot y_2$ $\cdot y_3$ $\cdot y_4$	$f(x) = x^3$
Onto NOT 1-to-1	f $\cdot x_1$ $\cdot x_2$ $\cdot x_2$ $\cdot x_3$ $\cdot x_4$ $\cdot x_4$	$f(x) = x^3 - x$
NOT Onto 1-to-1	$\begin{array}{c c} f \\ \cdot x_1 \\ \cdot x_2 \\ \cdot x_3 \\ \cdot y_3 \\ \cdot y_4 \end{array}$	$f(x) = e^{x}$
NOT Onto NOT 1-to-1	$\begin{array}{c} f \\ \cdot x_1 \\ \cdot x_2 \\ \cdot x_3 \end{array} \begin{array}{c} f \\ \cdot y_1 \\ \cdot y_2 \\ \cdot y_3 \end{array}$	$f(x) = x^2$

Example 1: Consider the function $f(\vec{x}) = f(x_1, x_2) = (x_1 + x_2, x_1 x_2)$. (This function represents any arbitrary function of two variables.)

Suppose $\vec{u} = \begin{bmatrix} 8 \\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$. (These represent two generic/random vectors in R^2 .) $f(\vec{u}) = f(8,3) = (8+3,8\cdot3) = (11,24).$ $f(\vec{v}) = f(2,11) = (13,22).$ $f(2\vec{u}+3\vec{v}) = f(22,39) = (61,858).$

Is $f(2\vec{u}+3\vec{v}) = 2f(\vec{u}) + 3f(\vec{v})$? No: (61,858) $\neq 2(11,24) + 3(13,22)$.

In fact, for most functions, $f(2\vec{u} + 3\vec{v}) \neq 2f(\vec{u}) + 3f(\vec{v})$, that is, they are not "linear" (see definition of linear in book on page 65).

Example 2: Where $A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$, define $f(\vec{x}) = A\vec{x} = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (x_1 + 2x_2, -3x_1 + 4x_2)$. Suppose $\vec{u} = \begin{bmatrix} 8 \\ 3 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$, as in Example 1. $f(\vec{u}) = (14, -12)$. $f(\vec{v}) = (24, 38)$. $f(2\vec{u} + 3\vec{v}) = f(22, 39) = (100, 90)$. Is $f(2\vec{u} + 3\vec{v}) = 2f(\vec{u}) + 3f(\vec{v})$? Yes: (100, 90) = 2(14, -12) + 3(24, 38).

A linear transformation/function is one for which $f(c_1\vec{u} + c_2\vec{v}) = c_1f(\vec{u}) + c_2f(\vec{v})$. See Book Example 1, p. 64.

See Book Example 3 about a shear transformation, p. 65 (The author is making a bit of a joke with the image next to Figure 4.)

See Book Examples 5 and 6, p. 67.