Most important ideas:

- **Matrix-vector product, on page 35.**
- Solution to $A\vec{x} = \vec{b}$, etc., Theorem 3, on page 36.
- **Equivalence of four statements in Theorem 4, page 37, in particular item (d) about having a pivot position in every row.**

Problem 1 (compare to class Problems 3a, 5a and 5b from Section 1.3): Given any vector $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\begin{bmatrix} a_1 \\ b_2 \end{bmatrix}$ in R^2 , are there x_1 and x_2 so that $x_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = b$? That is, is there a solution x_1 and x_2 to $\begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 & 1 \end{bmatrix}$ x_1 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\begin{bmatrix} 2 \ b_2 \end{bmatrix}$, no matter what $\,b\,$ is?

$$
\text{Yes. } \begin{bmatrix} 1 & 3 & |b_1| \\ 2 & 1 & |b_2| \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{5}b_1 + \frac{3}{5}b_2 \\ 0 & 1 & \frac{2}{5}b_1 - \frac{1}{5}b_2 \end{bmatrix}, \text{ so } \begin{aligned} x_1 &= -\frac{1}{5}b_1 + \frac{3}{5}b_2 \\ x_2 &= -\frac{2}{5}b_1 - \frac{1}{5}b_2 \end{aligned}.
$$

Of course we see that the particular values of x_1 and x_2 depend on the values of b_1 and b_2 .

Is there a pivot in every row of the coefficient matrix?

Yes. So there is guaranteed to be a solution.

Problem 2 (compare to class Problem 6 from Section 1.3): Given any right hand side $\vec{b} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ is there a solution $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to $\begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix}$ $\begin{bmatrix} 2 & -6 \end{bmatrix}$ x_1 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\begin{bmatrix} 2 \\ b_2 \end{bmatrix}$?

No. $\begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \ b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & -3 \ 0 & 0 \end{bmatrix} \begin{bmatrix} b_1 \ -2b_1+b_2 \end{bmatrix}$, so in general there is no solution (there is only a **solution if** $-2b_1 + b_2 = 0$, that is, if $b_2 = 2b_1$).

Is there a pivot in every row of the coefficient matrix?

No. So there may not be a solution, depending on what the values of \mathbf{b}_1 and \mathbf{b}_2 are.

What restriction on b_1 and b_2 is there?

That $-2b_1 + b_2 = 0$, that is, that $b_2 = 2b_1$, that is, $\begin{bmatrix} b_1 \ b_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ 2b \end{bmatrix}$ $\begin{bmatrix} \boldsymbol{b}_1 \\ 2\boldsymbol{b}_1 \end{bmatrix} = \boldsymbol{b}_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, so there is a **solution to** $\begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix}$ $\begin{bmatrix} 1 & -3 \\ 2 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \ b_2 \end{bmatrix}$ only if $\begin{bmatrix} b_1 \ b_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \ b_2 \end{bmatrix}$ is some multiple of $\begin{bmatrix} 1 \ 2 \end{bmatrix}$ $\frac{1}{2}$.

Note also that if there is a solution, there will be an infinite number of solutions, as the second variable will be a free variable. We can tell this since the second column in the coefficient matrix is not a pivot column.

Problem 3 (compare to class Problems 7 and 8 from Section 1.3): Given any right hand side
\n
$$
\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}, \text{ is there a solution to } \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.
$$
That is, do { $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$ } span R^3 ?
\n
$$
\begin{bmatrix} 1 & 4 & b_1 \\ 2 & 5 & b_2 \\ 3 & 6 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & b_1 \\ 0 & -3 & -2b_1 + b_2 \\ 0 & 0 & b_1 - 2b_2 + b_3 \end{bmatrix}, \text{ so there is no solution if } b_1 - 2b_2 + b_3 \neq 0.
$$

Is there a pivot in every row of the coefficient matrix?

No. So there may not be a solution, depending on the values of b_1 , b_2 and b_3 .

For there to be a solution, what restrictions on b_1 , b_2 and b_3 are there? That $b_1 - 2b_2 + b_3 = 0$. Note that this is the equation for a plane.

Problem 4 (compare to Problems 9 and 10 from Section 1.3): Given any right hand side $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\begin{bmatrix} b_1 \ b_2 \end{bmatrix}$, is there a solution to $\begin{bmatrix} 1 & 3 & 5 \ 2 & 4 & 6 \end{bmatrix}$ $\begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$ x_1 x_2 x_3 $\Big| = \Big|_{h_{\alpha}}^{b_1}$ $\begin{bmatrix} b_1 \ b_2 \end{bmatrix}$? That is, do $\{\begin{bmatrix} 1 \ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 5 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 6 \end{bmatrix}$ span R^2 ? $\begin{array}{ccc} 1 & 3 & 5 & b_1 \\ 2 & 4 & 6 & b_2 \end{array}$ $\begin{bmatrix} b_1 \ b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 5 \ 0 & -2 & -4 \end{bmatrix} \begin{bmatrix} b_1 \ -2b_1 + b_2 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & 0 & -1 \ 0 & 1 & 2 \end{bmatrix}$ $-2b_1 + \frac{3}{2}b_2$ $b_1-\frac{1}{2}b_2$ \mathbf{z} �

Is there a pivot in every row of the coefficient matrix?

Yes. So there will be a solution regardless of the values of b_1 and b_2 .

Are there any restrictions on b_1 and b_2 ?

Nope. They can be any value and there will still be a solution.

 $\begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$

 $\mathbf{1}$

How many solutions are there? (Notice Column 3 has no pivot. It's sort of an "extra" column.)

Infinitely many. The third column with no pivot means there will be a free variable x_3 so that **there will be an infinite number of solutions.**

For example, if $b_1 = 1$ and $b_2 = 6$, then $\frac{-2b_1 + \frac{3}{2}b_2}{b_1 + \frac{1}{2}b_2}$ $b_1 - \frac{1}{2}b_2 = -2$ **so our row reduced augmented matrix is** $\begin{bmatrix} 1 & 0 & -1 & 7 \ 0 & 1 & 2 & -2 \end{bmatrix}$, so $x_1 = 7 + x_3$ $x_2 = -2 - 2x_3$ $x_3 = x_3$ **. This is called the general solution. A couple of particular solutions are** $x_1 = 7$ $x_2 = -2$ $x_3 = 0$ **and** $x_1 = 8$ $x_2 = -4$ $x_3 = 1$ **. (There are infinitely many.) Check:** � $1\quad 3\quad 5$ $\begin{bmatrix} 2 & 4 & 6 \end{bmatrix}$ \mathbf{z} \mathbf{z} $\mathbf{1}$ $\Big| = 7 \Big|_2^1$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ – 2 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix} + 0 \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$. $\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ 8 $\begin{vmatrix} -4 \\ 2 \end{vmatrix} = 8 \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ – 4 $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix} + 1 \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$. \checkmark