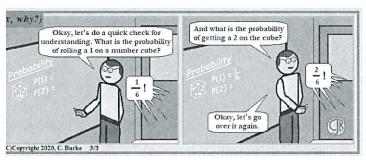
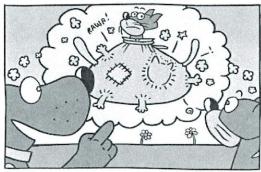
Name: Solutions

Problem	T/F	1	2	3	4/5	Total
Possible	30	10	26	20	14	100
Received						

YOU MAY USE A 3 X 5 CARD OF HANDWRITTEN NOTES, BOTH SIDES, AND A CALCULATOR.

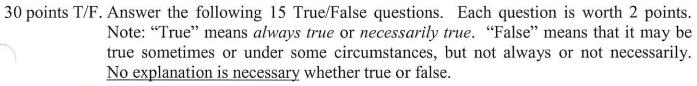
SHOW PERTINENT WORK IN SOLVING EACH PROBLEM.





"If there are 7 cats in a sack and I draw one at random,..."

"... what is the probability that I will draw you?"



- (1) T (F) W is orthogonal to W^{\perp} means each vector in W is orthogonal to at least one vector in W^{\perp} .
- (2) T (F) If $W = span\{\vec{v}_1\vec{v}_2\}$, then $Proj_W\vec{u} = \frac{\langle \vec{u}, \vec{v}_1 \rangle}{\langle \vec{v}_1, \vec{v}_1 \rangle} \vec{v}_1 + \frac{\langle \vec{u}, \vec{v}_2 \rangle}{\langle \vec{v}_2, \vec{v}_2 \rangle} \vec{v}_2$.

 Only if \vec{V}_1 , \vec{V}_2 are mutually orthogonal.
- (3) T F If every column of square matrix A is orthogonal to every other column of A and each column is of length/size 1, then $AA^T = I$.

A orthogonal => ATA = I => AAT = I, since A is square.

- (4) T For vector \vec{u} and vector space W, $Proj_W \vec{u}$ is orthogonal to \vec{u} .
- (5) T (F) It is possible for six non-zero vectors in R⁵ to be mutually orthogonal.

 Mutually orthogonal and non-zero \Rightarrow line independent cannot have be line independent.
- (6) T F For vector space W, if $Proj_W \vec{u} = \vec{u}$, then \vec{u} is a vector in W.
- (7) (T) F Every orthonormal set of vectors is linearly independent.

 E) all vectors are length 1

 => no \(\tilde{O}\) vectors

 (and since orthogonal)

 => lin. independent

- (8) T F The best (i.e. least squares) solution to $A\vec{x} = \vec{b}$ is the vector \vec{x} for which $||\vec{b} A\vec{x}||$ is minimized.
- (9) T F If the columns of $n \times n$ matrix A are orthonormal (i.e. if $A^T A = I$), then the exact solution to $A\vec{x} = \vec{b}$ is $\vec{x} = A^T \vec{b}$.

 Square, orthonormal columns \Rightarrow A^T is A^{-1}
- (10) T If \vec{u} is in $Col A^T$ and if \vec{v} is in Nul A, then it must be that $\vec{u} \cdot \vec{v} = 0$.
- (11) $T \left(F \right) \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$ is an orthogonal basis for R^3 .

 These are not mutually or thogonal.
- (12) T F For vector space W, if $\vec{x} = \vec{y} + \vec{z}$ where $\vec{y} \in W$ and $\vec{z} \in W^{\perp}$, then $\|\vec{x}\|^2 = \|\vec{y}\|^2 + \|\vec{z}\|^2$.

See Theorem 2, page 334.

(13) T $\stackrel{\frown}{\text{F}}$ If the columns of $m \times n$ U are orthonormal, then the rows of U are also orthonormal.

Would be true if U is square, i.e. if m = n.

(14) T F Suppose $\vec{u}, \vec{v} \in R^{10}$ form a basis for W, so dim W = 2. Then the set of all vectors that are orthogonal to W is a subspace of R^8 .

is an 8-dimensional subspace of IR10

(15) T F Suppose $\hat{\vec{b}} = Proj_W \vec{b}$. Then $\vec{b} = Proj_W \hat{\vec{b}}$.

10 points 1. We'll find a 2×2 matrix by looking at what the matrix and its inverse do to vectors.

Given initial vector $\vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, where $\vec{x}_{k+1} = A\vec{x}_k$, we have (approximately)

k	0	1	•••	10	11
\vec{x}_k	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 14\\18 \end{bmatrix}$		$\begin{bmatrix} 1.5 \times 10^9 \\ 2.0 \times 10^9 \end{bmatrix}$	$\begin{bmatrix} 1.5 \times 10^{10} \\ 2.0 \times 10^{10} \end{bmatrix}$

and (now using $\vec{x}_0 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ and A^{-1}) where $\vec{x}_{k+1} = A^{-1}\vec{x}_k$ we have (approximately)

2	k	0	1	•••	51	52
	\vec{x}_k	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 0.1 \\ 0.3 \end{bmatrix}$	•••	$\begin{bmatrix} 4.44 \times 10^{-16} \\ 8.88 \times 10^{-16} \end{bmatrix}$	$\begin{bmatrix} 2.22 \times 10^{-16} \\ 4.44 \times 10^{-16} \end{bmatrix}$

Find A. Hint: first, estimate the eigenvalues and eigenvectors, and then use these to write A as the produce of three matrices. Note: you are welcome to leave A written as the product of three matrices and NOT actually do the computation to find A.

(1) => A has e-value/vector 10,
$$\begin{bmatrix} 1.5 \\ 2 \end{bmatrix}$$

(2) => A has e-value/vector $\frac{1}{2}$, $\begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$
=> A has e-value/vector 2, $\begin{bmatrix} \frac{1}{2} \\ 2 \end{bmatrix}$.
So $A = \begin{bmatrix} 1.5 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1.5 & 1 \\ 2 & 2 \end{bmatrix}$

26 points 2. Suppose
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix}$.

/8 (a) Find the least squares solution $\hat{\vec{x}}$ to $A\vec{x} = \vec{b}$. Show appropriate work.

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 9 \\ 9 & 29 \end{bmatrix} A^{T}\vec{5} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$$

$$S_0 \stackrel{\wedge}{X} = \frac{1}{3.29 - 9.9} \left[\frac{29 - 9}{-9} \right] \left[\frac{3}{7} \right] = \frac{1}{6} \left[\frac{87 - 63}{-27 + 21} \right] = \left[\frac{4}{-1} \right]$$

$$\left[A^T A \right]^{-1}$$

/2 (b) Find $\hat{\vec{b}}$, the projection of \vec{b} onto $Col\ A$. That is, compute $\hat{\vec{b}} = A\hat{\vec{x}}$ using the $\hat{\vec{x}}$ that you found in (a).

$$\frac{2}{b} = A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$$

Notice:
$$\vec{b} - \vec{b} = \begin{bmatrix} 2 \\ -4 \\ 2 \end{bmatrix}$$
 is \perp to columns of A

/5 (c) Next, use the Gram-Schmidt Process to find an orthogonal basis (call these vectors \vec{v}_1, \vec{v}_2) for *Col A*. That is, find \vec{v}_1, \vec{v}_2 from the two columns of *A*. Show appropriate work.

$$\frac{7}{\sqrt{1}} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 9 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} - \frac{9}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

Problem 2 is continued on this page or thogonal (d) Find the projection $Proj_{Span\{\vec{v}_1,\vec{v}_2\}}$ for the \vec{v}_1,\vec{v}_2 that you found in (c).

$$\hat{\vec{b}} = \frac{\vec{b} \cdot \vec{V_1}}{\vec{V_1} \cdot \vec{V_1}} \vec{V_1} + \frac{\vec{b} \cdot \vec{V_2}}{\vec{V_2} \cdot \vec{V_2}} \vec{V_2}$$

$$= \frac{3}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{-2}{2} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{Z} \\ 1 \\ 0 \end{bmatrix}$$

(e) Finally, using the work that you did in (c), find the QR factorization of A, where

(e) Finally, using the work that you did in (c), find the
$$QR$$
 factorization of A , where Q has orthonormal columns and R is upper triangular.

Normalize $\begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$ to get $Q = \begin{bmatrix} \frac{1}{13} & -\frac{1}{12} \\ \frac{1}{13} & 0 \end{bmatrix}$

$$\Rightarrow R = Q^{T}A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

$$\begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{9}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \sqrt{3} & 3\sqrt{3} \\ 0 & \sqrt{2} \end{bmatrix}.$$

20 points 3. Suppose
$$\vec{x} = \begin{bmatrix} 1 \\ -4 \\ -3 \\ 5 \end{bmatrix}$$
, $\vec{u}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$, $\vec{u}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix}$, and $W = span\{\vec{u}_1, \vec{u}_2\}$.

(a) Find vectors $\vec{y} \in W$ and $\vec{z} \in W^T$ so that $\vec{x} = \vec{y} + \vec{z}$. (Notice that $\vec{u}_1 \perp \vec{u}_2$.)

77 (a) Find vectors
$$\vec{y} \in W$$
 and $\vec{z} \in W^T$ so that $\vec{x} = \vec{y} + \vec{z}$. (Notice that $\vec{u}_1 \perp \vec{u}_2$.)
$$\vec{y} = P_{roj} W \vec{X} = \vec{X} \cdot \vec{u}_1 \vec{u}_1 + \vec{X} \cdot \vec{u}_2 \vec{u}_2 = \frac{9}{3} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + \frac{6}{6} \begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ -2 \end{bmatrix}$$
Then $\vec{z} = \vec{X} - \vec{y} = \begin{bmatrix} 1 \\ -4 \\ -3 \\ 5 \end{bmatrix} - \begin{bmatrix} 4 \\ -2 \\ -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ -1 \\ 2 \end{bmatrix}$, which \vec{u}_1, \vec{u}_2

[1] (b) Briefly explain why dim $W^\perp = 2$.

(b) Briefly explain why $\dim W^{\perp} = 2$.

(c) Find two vectors that form a basis for W^{\perp} . (You might want to first double check that your two vectors are orthogonal to $\vec{\mathbf{u}}_1, \vec{\mathbf{u}}_2$.)

Need
$$\vec{x} \cdot \vec{u}_1 = 0$$
 $\begin{bmatrix} 1 & 0 & -1 & 1 \\ 1 & -2 & 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} X_1 = X_3 - X_4 \\ X_2 = X_3 - \frac{1}{2}X_4 \\ X_3 = X_3 \end{bmatrix}$

/6 (d) Show that the vector \vec{z} that you found in (a) is indeed in W^{\perp} . Do this by finding how you would build (as a linear combination) \vec{z} from the two vectors you found in (c).

Need:
$$\begin{bmatrix} -3 \\ -2 \\ -1 \\ 2 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\$$

For the final two problems, $A = PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -3 \\ -6 & 0 \end{bmatrix}$.

8 points 4. The sizes of two competing populations \vec{x} change according to $\vec{x}_{k+1} = A\vec{x}_k$.

Where
$$\vec{x}_0 = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$$
, find \vec{x}_1 In general, what is \vec{x}_k ?

$$\vec{x}_k = c_1 \left(-3 \right)^k \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + c_2 \left(\begin{array}{c} b \end{array} \right)^k \left(\begin{array}{c} -1 \\ 1 \end{array} \right)$$

$$\vec{x}_k = c_1 \left(\begin{array}{c} -3 \end{array} \right)^k \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + c_2 \left(\begin{array}{c} -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} c_1 \\ c_2 \end{array} \right)$$

$$\vec{x}_k = c_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + c_2 \left(\begin{array}{c} -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} c_1 \\ c_2 \end{array} \right)$$

$$\vec{x}_k = c_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + c_2 \left(\begin{array}{c} -1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} c_1 \\ c_2 \end{array} \right)$$

$$\vec{x}_k = c_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) - \left(\begin{array}{c} 1 \\ 2 \end{array} \right) + \left(\begin{array}{c} 1 \\ 2 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 11 \end{array} \right) = \left(\begin{array}{c} 1 \\ 3 \end{array} \right)$$

$$\vec{x}_k = c_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) - \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 \\ 11 \end{array} \right) = \left(\begin{array}{c} 1 \\ 3 \end{array} \right)$$

7 jints 5. The position \vec{x} of a particle in a planar force field satisfies the equation $\frac{d\vec{x}}{dt} = A\vec{x}$.

Where $\vec{x}(0) = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$, find the position of the particle at time t.

$$\vec{x}(t) = c_1 e^{-3t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 e^{-6t} \begin{bmatrix} -1 \\ 1 \end{bmatrix},$$

Same C,, C2 as found above.