Name: __

Y OU MAY USE A 3 X 5 CARD OF HANDWRITTEN NOTES , BOTH SIDES , AND A CALCULATOR .

SHOW PERTINENT WORK IN SOLVING EACH PROBLEM.

and I draw one at random,...'

"... what is the probability that I will draw you?"

- 30 points T/F. Answer the following 15 True/False questions. Each question is worth 2 points. Note: "True" means *always true* or *necessarily true*. "False" means that it may be true sometimes or under some circumstances, but not always or not necessarily. No explanation is necessary whether true or false.
	- (1) T F *W* is orthogonal to W^{\perp} means each vector in W is orthogonal to at least one vector in W^{\perp} .

(2) T F If
$$
W = \text{span}\{\vec{v}_1\vec{v}_2\}
$$
, then $\text{Proj}_W \vec{u} = \frac{\langle \vec{u}, \vec{v}_1 \rangle}{\langle \vec{v}_1, \vec{v}_1 \rangle} \vec{v}_1 + \frac{\langle \vec{u}, \vec{v}_2 \rangle}{\langle \vec{v}_2, \vec{v}_2 \rangle} \vec{v}_2$.

- (3) T F If every column of square matrix A is orthogonal to every other column of A and each column is of length/size 1, then $A A^T = I$.
- (4) T F For vector \vec{u} and vector space W, $Proj_W\vec{u}$ is orthogonal to \vec{u} .
- (5) T F It is possible for six non-zero vectors in R^5 to be mutually orthogonal.
- (6) T F For vector space W, if $Proj_W \vec{u} = \vec{u}$, then \vec{u} is a vector in W.
- (7) T F Every orthonormal set of vectors is linearly independent.
- (8) T F The best (i.e. least squares) solution to $A\vec{x} = \vec{b}$ is the vector \vec{x} for which $\|\vec{b} A\vec{x}\|$ is minimized.
- (9) T F If the columns of $n \times n$ matrix A are orthonormal (i.e. if $A^T A = I$), then the exact solution to $A\vec{x} = \vec{b}$ is $\vec{x} = A^T \vec{b}$.
- (10) T F If \vec{u} is in Col A^T and if \vec{v} is in *Nul A*, then it must be that $\vec{u} \cdot \vec{v} = 0$.

(11) T F
$$
\left\{\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}
$$
 is an orthogonal basis for R^3 .

- (12) T F For vector space W, if $\vec{x} = \vec{y} + \vec{z}$ where $\vec{y} \in W$ and $\vec{z} \in W^{\perp}$, then $\|\vec{x}\|^2 = \|\vec{y}\|^2 + \|\vec{z}\|^2.$
- (13) T F If the columns of $m \times n$ U are orthonormal, then the rows of U are also orthonormal.
- (14) T F Suppose $\vec{u}, \vec{v} \in R^{10}$ form a basis for W, so dim $W = 2$. Then the set of all vectors that are orthogonal to W is a subspace of R^8 .

(15) T F Suppose
$$
\hat{\vec{b}} = Proj_W \vec{b}
$$
. Then $\vec{b} = Proj_W \hat{\vec{b}}$.

10 points 1. We'll find a 2×2 matrix by looking at what the matrix and its inverse do to vectors.

Given initial vector $\vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\hat{\mathbf{x}}_{k+1} = A\vec{x}_k$, we have (approximately)

		\cdots	
\vec{x}_k		\cdots	$\left\vert \left[\frac{1.5 \times 10^9}{2.0 \times 10^9} \right] \right\vert \left[\frac{1.5 \times 10^{10}}{2.0 \times 10^{10}} \right]$

and (now using $\vec{x}_0 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and \mathbf{A}^{-1}) where $\vec{x}_{k+1} = \mathbf{A}^{-1} \vec{x}_k$ we have (approximately)

	\cdots		
		\vec{x}_k $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 0.1 \\ 0.3 \end{bmatrix}$ \cdots $\begin{bmatrix} 4.44 \times 10^{-16} \\ 8.88 \times 10^{-16} \end{bmatrix}$ $\begin{bmatrix} 2.22 \times 10^{-16} \\ 4.44 \times 10^{-16} \end{bmatrix}$	

Find A. Hint: first, estimate the eigenvalues and eigenvectors, and then use these to write A as the produce of three matrices. Note: you are welcome to leave A written as the product of three matrices and NOT actually do the computation to find A.

26 points 2. Suppose $A = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 2 1 3 1 4 | and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 4 −3 2 \cdot

/8 (a) Find the least squares solution \vec{x} to $A\vec{x} = \vec{b}$. Show appropriate work.

/2 (b) Find \vec{b} , the projection of \vec{b} onto *Col A*. That is, compute $\vec{b} = A\hat{x}$ using the \hat{x} that you found in (a).

/5 (c) Next, use the Gram-Schmidt Process to find an orthogonal basis (call these vectors \vec{v}_1 , \vec{v}_2) for *Col A*. That is, find \vec{v}_1 , \vec{v}_2 from the two columns of *A*. Show appropriate work.

Problem 2 is continued on this page

/5 (d) Find the projection $Proj_{span{\{\vec{v}_1,\vec{v}_2\}}}\vec{u}$ for the \vec{v}_1, \vec{v}_2 that you found in (c).

/6 (e) Finally, using the work that you did in (c), find the QR factorization of A, where Q has orthonormal columns and R is upper triangular.

20 points 3. Suppose $\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ 1 −4 −3 5 |, $u_1 =$ | 1 $\boldsymbol{0}$ −1 1 $| , u_2 = |$ 1 −2 1 $\boldsymbol{0}$, and $W = span{\overrightarrow{u}_1, \overrightarrow{u}_2}.$

/7 (a) Find vectors $\vec{y} \in W$ and $\vec{z} \in W^T$ so that $\vec{x} = \vec{y} + \vec{z}$. (Notice that $\vec{u}_1 \perp \vec{u}_2$.)

- /1 (b) Briefly explain why dim $W^{\perp} = 2$.
- /6 (c) Find two vectors that form a basis for W^{\perp} . (You might want to first double check that your two vectors are orthogonal to \vec{v}_1 , \vec{v}_2 .)

/6 (d) Show that the vector \vec{z} that you found in (a) is indeed in W^{\perp} . Do this by finding how you would build (as a linear combination) \vec{z} from the two vectors you found in (c).

For the final two problems,
$$
A = PDP^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -3 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -3 \\ -6 & 0 \end{bmatrix}
$$
.

8 points 4. The sizes of two competing populations \vec{x} change according to $\vec{x}_{k+1} = A\vec{x}_k$. Where $\vec{x}_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, find \vec{x}_1 . In general, what is \vec{x}_k ?

6 points 5. The position \vec{x} of a particle in a planar force field satisfies the equation $\frac{dx}{dt} = A\vec{x}$. Where $\vec{x}(0) = \begin{bmatrix} 1 \\ 11 \end{bmatrix}$, find the position of the particle at time t.