Name:

Problem	T/F	1 / 2	3	4 / 5	Total
Possible	50	15	15	20	100
Received					

YOU MAY USE A 3 X 5 CARD OF NOTES.

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

- 50 points T/F. Answer the following 25 True/False questions. Each question is worth 2 points. Note: "True" means *always true* or *necessarily true*. "False" means that it may be true sometimes or under some circumstances, but not always or not necessarily. <u>No explanation is necessary</u> whether true or false.
 - (1) T F If 4×5 matrix A has two pivot columns, then $Col A = R^2$.
 - (2) T F If $A\vec{v}_1 = \lambda_1\vec{v}_1$ and $A\vec{v}_2 = \lambda_2\vec{v}_2$ where \vec{v}_1 and \vec{v}_2 are eigenvectors of A and $\lambda_1 \neq \lambda_2$, then it must be that \vec{v}_1 and \vec{v}_2 are linearly independent.
 - (3) T F For matrix A, if \vec{v}_1 is an eigenvector corresponding to eigenvalue λ_1 and \vec{v}_2 is an eigenvector corresponding to eigenvalue λ_2 , then $\vec{v}_1 \vec{v}_2$ is an eigenvector corresponding to eigenvalue $\lambda_1 \lambda_2$.
 - (4) T F For 3×5 matrix A, $3 \le rank A \le 5$.
 - (5) T F If a 5 × 5 matrix A has rank 4, then $A\vec{x} = \vec{b}$ could have a unique solution for some right hand side \vec{b} .
 - (6) T F If a 5 × 5 matrix A has rank 4, then $A\vec{x} = \vec{b}$ will have <u>no</u> solution for some right hand side \vec{b} and an infinite number of solutions for some other \vec{b} .
 - (7) T F If a 5 × 5 matrix A has rank 4, then $A\vec{x} = \vec{b}$ will have an infinite number of solutions for some right hand side \vec{b} , no solution for some other right hand side \vec{b} , and a unique solution for yet another right hand side \vec{b} .
 - (8) T F The area of the parallelogram with vertices of the origin, (1,3) and (2,1) is 5.

(9) T F For any $\vec{v}_1, \vec{v}_2, \vec{v}_3$ in R^5 , $span\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a subspace of R^5 .

(10) T F $\begin{bmatrix} 5\\5 \end{bmatrix}$ is in both the column space and the null space of $\begin{bmatrix} 3 & -3\\3 & -3 \end{bmatrix}$.

- (11) T F $\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 6 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 6 & 1 \\ 8 & 2 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 6 \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 8 & 2 \end{bmatrix}^{-1}.$
- (12) T F For a 3×5 matrix, the dimensions of the row space and column space will be different.
- (13) T F If $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is a basis for R^3 , then the matrix $[\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$ is invertible.
- (14) T F If det A = 2 and det B = -3, then det(A + B) = -1.

(15) T F
$$\det(A^T) = -\det A$$
.

(16) T F If $A\vec{x} = \vec{b}$, then \vec{x} is in the column space of A.

(17) T F $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ is an eigenvector of matrix $\begin{bmatrix} a & b & c\\c & a & b\\b & c & a \end{bmatrix}$, no matter what a, b and c are.

(18) T F The determinant of
$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 0 \end{bmatrix}^{-1}$$
 is 0.

(19) T F If the determinant of
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$
 were 5 (it's actually not), then the determinant of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 7 & 9 \end{bmatrix}$ would also be 5.
(20) T F If the determinant of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$ were 5 (it's actually not), then the determinant of $\begin{bmatrix} 0 & 0 & 0 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$ would also be 5.
(21) T F If the determinant of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix}$ were 5 (it's actually not), then the determinant of $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$ would also be 5.

For the final four problems, V is a vector space, and vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ come from V.

(22) T F If $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ form a basis for V, then $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$ is linearly independent.

(23) T F If $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is linearly independent, then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ form a basis for V.

(24) T F If span $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = V$, then some subset of $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is a basis for V.

(25) T F If dim V = n and span $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\} = V$, then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ is linearly independent.

5 points	1.	If a 5 \times 9 matrix A has rank 3, then:	dim Row A	=
			rank A^T	=
			dim Nul A	=
		If a 9 \times 5 matrix <i>A</i> has rank 3, then:	dim Nul A	=
		If a 5 \times 5 matrix <i>A</i> has rank 3, then:	dim Nul A	=

10 points 2. Consider the probability matrix $A = \begin{bmatrix} 1/3 & 1/2 \\ 2/3 & 1/2 \end{bmatrix}$, which has eigenvectors $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and corresponding eigenvalues -1/6 and 1.

First, suppose that $\vec{x}_0 = \begin{bmatrix} 500\\500 \end{bmatrix}$. Find \vec{x}_0 as a linear combination of $\begin{bmatrix} 1\\-1 \end{bmatrix}$, $\begin{bmatrix} 3\\4 \end{bmatrix}$. That is find $[\vec{x}_0]_B$ where $B = \{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \}$. Don't just guess—<u>show your work</u>.

Second, find $\vec{x}_{\infty} = A^{\infty} \vec{x}_0$ (that is, find $\lim_{k \to \infty} A^k \vec{x}_0$). Again, show your work.

11 points 3. Consider matrix A which is row equivalent to matrix B:

$$A = \begin{bmatrix} 1 & -5 & 1 & 2 & -1 & 1 \\ 1 & -5 & 2 & 0 & -3 & 3 \\ 1 & -5 & 3 & -2 & 3 & 13 \\ 1 & -5 & 4 & -4 & 5 & 19 \end{bmatrix}, B = \begin{bmatrix} 1 & -5 & 0 & 4 & 0 & -2 \\ 0 & 0 & 1 & -2 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

First, even though there are six columns, based on the dimensions of *A*, how do you know that dim *Col A* \leq 4?

Find the following:

rank A =

A basis for *Col A* :

A basis for *Row A* :

A basis for Nul A:

9 points 4. Use Cramer's Rule to find x_2 in the linear system

$$\begin{array}{rcl} -x_1 + 2x_2 + 3x_3 &=& 0\\ 3x_2 + 5x_3 &=& -2\\ x_1 + 4x_2 &=& 0 \end{array}$$

15 points 5. Find the two eigenvalues and corresponding eigenvectors of $A = \begin{bmatrix} 2 & 2 \\ -3 & 7 \end{bmatrix}$. Hint in factoring: $4 \cdot 5 = 20$

Find matrices X and D so that $A = XDX^{-1}$.

How do you know that X is invertible?