Name: Solutions

Problem	T/F	1	2	3 / 4	Total
Possible	40	32	12	16	100
Received					

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3×5 card of notes,

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

off the mark by Mark Parisi w w w o f f t h o m a r k o o m HEY! GET BACK HERE! GET BACK AN'T TURKEYS CAN'T FLY! FLY! W W O CAN'T FLY! W O CAN'T FLY O CAN'T FL

© Mark Parisi, Permission required for use

© Mark Parisi, Permission required for use.

© Mark Parisi, Permission required for use.

40 points T/F. Answer the following 20 True/False questions. Each question is worth 2 points. Note: "True" means *always true* or *necessarily true*. "False" means that it may be true sometimes or under some circumstances, but not always or not necessarily. <u>No explanation is necessary</u> whether true or false.

True also If
$$W = span\{\vec{v}_1, \vec{v}_2\}$$
, then $Proj_W \vec{u} = \frac{\vec{u}\cdot\vec{v}_1}{\vec{v}_1\cdot\vec{v}_1}\vec{v}_1 + \frac{\vec{u}\cdot\vec{v}_2}{\vec{v}_2\cdot\vec{v}_2}\vec{v}_2$.
 $Only \quad if \quad \vec{v}_1 \perp \vec{v}_2$
True (raise) $\vec{u} - Proj_W \vec{u}$ is parallel to W .
 \vec{n} the genal
True (raise) $A\vec{x} = \vec{b}$ always has a unique least squares solution.
(True) False If $\hat{\vec{x}}$ is the least squares solution to $A\vec{x} = \vec{b}$, then for any other \vec{x} we have $\|\vec{b} - A\vec{x}\| \le \|\vec{b} - A\vec{x}\|$.
(True) False The angle between vectors $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\begin{bmatrix} -8\\-5\\6 \end{bmatrix}$ is 90°.
 $\int inc e \quad \vec{u} \cdot \vec{v} = O$
True (raise) The distance between vectors \vec{u} and \vec{v} is $\||\vec{u} + \vec{v}\|$.
(True) False For a square matrix A , vectors in $Col A$ are orthogonal to vectors in $Nul A^T$.
True (raise) If $\||\vec{u} + \vec{v}\| \le \||\vec{u}\| + \|\vec{v}\|$, then $\vec{u} \cdot \vec{v} \neq 0$.
 $Always \le Only = if \vec{u}$ and \vec{v} are parallel \vec{u} , \vec{v} .
True (raise) A linearly independent set of non-zero vectors is linearly independent.

32 points 1. We are interested in finding the solution to

$$\begin{array}{rcl}
x + 3y &=& 0\\
x + 2y &=& -1\\
x + y &=& 4
\end{array}$$

/7 With more equations than unknowns, likely this system does not have an exact solution. So let's do the best we can. First (and being <u>careful with your arithmetic</u>) find the least squares solution $\hat{\vec{x}}$ to $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & 3 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 0 \\ -1 \\ 4 \end{bmatrix}.$$

$$A^{T}A = \cdots = \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix}, \text{ inverse is } \frac{1}{3 \cdot 14 - 6 \cdot 6} \begin{bmatrix} 14 - 6 \\ -6 & 3 \end{bmatrix}$$

$$A^{T}\vec{b} = \cdots = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$

$$S_{0} \quad \hat{\vec{x}} = \frac{1}{6} \begin{bmatrix} 14 - 6 \\ -6 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}.$$

/2 Compute $A\hat{\vec{x}}$ using the above $\hat{\vec{x}}$ you just found. (Recall that $\hat{\vec{b}} = A\hat{\vec{x}} = Proj_{ColA}\vec{b}$ is the closest we can get to building vector \vec{b} using the columns of A.)

$$\hat{f} = \begin{pmatrix} 1 & 3 \\ 1 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ -2 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 3 \end{pmatrix}$$

/2 Find $\vec{b} - \hat{\vec{b}}$, and confirm that $\vec{b} - \hat{\vec{b}} \perp$ the columns of A. $\begin{bmatrix}
0 \\
-1 \\
4
\end{bmatrix} -
\begin{bmatrix}
-1 \\
1 \\
3
\end{bmatrix} =
\begin{bmatrix}
1 \\
-2 \\
-2
\end{bmatrix}, where product with
\begin{bmatrix}
1 \\
1
\end{bmatrix},
\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix},
\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix},
\begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix},
\begin{bmatrix}
5 \\
0
\end{bmatrix}.$ Problem 1 continued (careful in doing your arithmetic!)

- $\begin{array}{l} \text{/6 We still want to find } Proj_{ColA}\vec{b}, \text{ where } A = \begin{bmatrix} 1 & 3\\ 1 & 2\\ 1 & 1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}. \text{ But this time} \\ \text{we'll do it a bit differently. First, use the Gram-Schmidt Process to construct two} \\ \text{orthogonal vectors whose span is the same as the two columns of matrix } A. That is, \\ \text{where } \vec{u}_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} \text{ and } \vec{u}_2 = \begin{bmatrix} 3\\ 2\\ 1\\ 1 \end{bmatrix}, \text{ find } \vec{v}_1 \text{ and } \vec{v}_2 \text{ so that } span\{\vec{v}_1, \vec{v}_2\} = span\{\vec{u}_1, \vec{u}_2\}, \\ \text{but where } \vec{v}_1 \perp \vec{v}_2. \\ \vec{v}_1 = \vec{u}_1 = \begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix}, \\ \vec{v}_2 = \vec{u}_2 \vec{u}_2 \cdot \vec{v}_1 \quad \vec{v}_1 = \begin{bmatrix} 3\\ 2\\ 1\\ 1 \end{bmatrix} \frac{6}{3}\begin{bmatrix} 1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ -1\\ -1\\ 1 \end{bmatrix}, \\ (N_0 \text{ fice }: \quad \vec{v}_2 = \vec{u}_2 2\vec{v}_1, \quad so \quad 2\vec{v}_1 + \vec{v}_2 = \vec{u}_2.) \\ \text{/7 Of course your } \vec{v}_1 \text{ and } \vec{v}_2 \text{ should be orthogonal. Using this fact, find <math>Proj_{\vec{v}_1, \vec{v}_2}\vec{b} \\ \text{ (or if you prefer the alternate notation, find <math>Proj_W \vec{b}, \text{ where } W = span\{\vec{v}_1, \vec{v}_2\}. \\ \vec{v}_1 \cdot \vec{v}_1 + \vec{v}_2 \cdot \vec{v}_2 \quad \vec{v}_2 = \frac{3}{3} \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix} + \frac{-4}{2} \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix} = \begin{bmatrix} -1\\ 3\\ -1 \end{bmatrix} = \begin{bmatrix} -1\\ 3\\ -1 \end{bmatrix} = Same \text{ as on previous } page. \end{aligned}$
 - /8 Using your work above, find the QR-factorization of A where Q has orthogonal columns and R is upper triangular. (+1 point extra credit if you find Q and R so that the columns of Q are orthonormal).

$$\left(\begin{array}{c} \vec{v}_{1} & \vec{v}_{2} \\ \vec{v}_{1} & \vec{v}_{2} \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 0 & 1 \end{array} \right) = \left(\begin{array}{c} \vec{u}_{1} & \vec{u}_{2} \\ \vec{u}_{2} & \vec{u}_{2} \end{array} \right) \left(\begin{array}{c} 1/13 \\ 1/13 \\ 1/13 \end{array} \right) \left(\begin{array}{c} 1/13 \\ 1/13 \end{array} \right) \left(\begin{array}{c} 1/12 \\ 0 \\ 1$$

12 points 2. We'll determine what a 2×2 matrix A does to a vector by examining the long term

We'll determine what a 2 × 2 matrix A does to a vector by examining the long term behavior of multiplying some vector by A and by A^{-1} .									
Given initial vector $\vec{x}_0 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, where $\vec{x}_{k+1} = A \vec{x}_k$, we have (approximately)									
	k	0	1	•••	10	11	$= (1) \lambda = 3$		
	\vec{x}_k	$\begin{bmatrix} 2\\ -1 \end{bmatrix}$	[⁹] [3]		$\begin{bmatrix} 3 \times 10^5 \\ 3 \times 10^5 \end{bmatrix}$	$ \begin{bmatrix} 9 \times 10^5 \\ 9 \times 10^5 \end{bmatrix} $	$\vec{v}_i = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\lambda_i = 3$		

and (now using $\vec{x}_0 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$) where $\vec{x}_{k+1} = \mathbf{A}^{-1} \vec{x}_k$ we have (approximately)

k	0	1	•••	27	28
\vec{x}_k	$\begin{bmatrix} -2 \\ 1 \end{bmatrix}$	[-0.17] []		$ [{2 \times 10^{-8} \atop 4 \times 10^{-8} }]$	$\begin{bmatrix} 1 \times 10^{-8} \\ 2 \times 10^{-8} \end{bmatrix}$

 $\vec{v}_2 = \begin{pmatrix} l \\ 2 \end{pmatrix} \quad \lambda_2 = 2$

Hint: estimate the eigenvalues and eigenvectors from the Find $A^3 \vec{x}$ where $\vec{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. above information, find \vec{x} as a linear combination of those two eigenvectors, and then compute $A^3 \vec{x}$. -1- .

$$\begin{bmatrix} 2\\3 \end{bmatrix} = C_{1} \begin{pmatrix} 1\\1 \end{pmatrix} + C_{2} \begin{pmatrix} 1\\2 \end{pmatrix} = \left[\begin{pmatrix} 1\\2 \end{pmatrix} \right] = \left[\begin{pmatrix} 1\\1 \end{pmatrix} + \begin{pmatrix} 2\\3 \end{pmatrix} \right] = \cdots = \left[\begin{pmatrix} 1\\1 \end{pmatrix} \right]$$
So $\begin{bmatrix} 2\\3 \end{pmatrix} = \begin{bmatrix} 1\\1 \end{pmatrix} + \begin{pmatrix} 1\\2 \end{pmatrix}$
Then $A^{3}\vec{x} = A^{3} \begin{bmatrix} 1\\1 \end{pmatrix} + A^{3} \begin{bmatrix} 1\\2 \end{pmatrix} = 3^{3} \begin{bmatrix} 1\\1 \end{pmatrix} + 2^{3} \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{pmatrix} 35\\43 \end{pmatrix}$.
Or if you like doing more work \because
 $A^{3} = \begin{bmatrix} 1\\1 \end{pmatrix} \begin{bmatrix} 3^{3}0\\0 \\ 2^{3} \end{bmatrix} \begin{bmatrix} 1\\1 \\ 2^{-1} \\ -1^{2} \\ 3^{3} \\ -1^{2} \end{bmatrix}$, so $A^{3}\vec{x} =$
 $A^{3} = \begin{bmatrix} 1\\1 \\ 2 \end{bmatrix} \begin{bmatrix} 3^{3}0\\0 \\ 2^{3} \end{bmatrix} \begin{bmatrix} 1\\1 \\ 2^{-1} \\ -1^{2} \\ 3^{3} \\ -1^{2}$

/8 3. Given functions f(t) = t and $g(t) = t^2$, use the Gram-Schmidt Process to find two functions that are orthogonal under the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.

$$\begin{pmatrix} \frac{dO}{dt} \\ \frac{dR}{dt} \\ \frac{dR}{dt} \end{pmatrix} = \begin{pmatrix} 0.42 & 0.02 \\ 0.08 & 0.48 \\ R \\ \frac{dR}{dt} \end{pmatrix} = \begin{pmatrix} 0.42 & 0.02 \\ 0.08 & 0.48 \\ R \\ \frac{dR}{dt} \\ \frac$$