Name:

Problem	T/F	1	2	3 / 4	Total
Possible	40	32	12	16	100
Received					

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3×5 card of notes,

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

off the mark by Mark Parisi w w w o f f t h o m a r k o o m HEY! GET BACK HERE! GET BACK AN'T TURKEYS CAN'T FLY! FLY! PROPER INCENTIVE BE SAID FOR WERE'S A LOT TO DE SAID FOR

© Mark Parisi, Permission required for use

© Mark Parisi, Permission required for use.

© Mark Parisi, Permission required for use.

40 points T/F. Answer the following 20 True/False questions. Each question is worth 2 points. Note: "True" means *always true* or *necessarily true*. "False" means that it may be true sometimes or under some circumstances, but not always or not necessarily. <u>No explanation is necessary</u> whether true or false.

True False If
$$W = span\{\vec{v}_1, \vec{v}_2\}$$
, then $Proj_W \vec{u} = \frac{\vec{u} \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 + \frac{\vec{u} \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2$.

True False $\vec{u} - Proj_W \vec{u}$ is parallel to W.

True False $A\vec{x} = \vec{b}$ always has a unique least squares solution.

True False If $\hat{\vec{x}}$ is the least squares solution to $A\vec{x} = \vec{b}$, then for any other \vec{x} we have $\|\vec{b} - A\hat{\vec{x}}\| \le \|\vec{b} - A\vec{x}\|$.

True False The angle between vectors $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} -8 \\ -5 \\ 6 \end{bmatrix}$ is 90°.

True False The distance between vectors \vec{u} and \vec{v} is $\|\vec{u} + \vec{v}\|$.

True False For a square matrix A, vectors in Col A are orthogonal to vectors in Nul A^{T} .

True False If $\|\vec{u} + \vec{v}\| < \|\vec{u}\| + \|\vec{v}\|$, then $\vec{u} \cdot \vec{v} \neq 0$.

True False A linearly independent set of non-zero vectors must be an orthogonal set.

True False An orthogonal set of non-zero vectors is linearly independent.

True False
$$\begin{cases} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix} \end{cases}$$
 is an orthogonal basis for \mathbb{R}^4 .

True False If *L* is a line through the origin and if $\hat{\vec{y}}$ is the orthogonal projection of \vec{y} onto *L*, then $\|\vec{y} - \hat{\vec{y}}\|$ gives the distance from \vec{y} to *L*.

True False If the columns of A are orthonormal, then for any vector \vec{x} we have $||A\vec{x}|| = ||\vec{x}||$.

True False If
$$\operatorname{Proj}_{\vec{v}} \vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, then $\operatorname{Proj}_{3\vec{v}} \vec{u} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$.

True False If
$$\operatorname{Proj}_{\vec{v}} \vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
, then $\operatorname{Proj}_{\vec{v}} 3\vec{u} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$.

- True False If U and V are orthogonal matrices (if $U^T U = I$ and $V^T V = I$), then their product UV is orthogonal.
- True False Given a linearly independent set of vectors $\{\vec{v}_1, \vec{v}_2, ..., \vec{v}_n\}$, dividing each by its own length $\{\frac{\vec{v}_1}{\|\vec{v}_1\|}, \frac{\vec{v}_2}{\|\vec{v}_2\|}, ..., \frac{\vec{v}_n}{\|\vec{v}_n\|}\}$ will result in an orthonormal set of vectors.

True False If λ_1 and λ_2 are eigenvalues of $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then $|\lambda_1| = 1$ and $|\lambda_2| = 1$.

True False If the columns of U form an orthonormal basis for R^n , then for $\vec{y} \in R^n$, $UU^T \vec{y} = \vec{y}$.

True False The projection of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ onto $span\{\begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}\}$ is $\begin{bmatrix} 7/2 \\ 1/2 \end{bmatrix}$.

32 points 1. We are interested in finding the solution to

$$\begin{array}{rcl}
x + 3y &=& 0\\
x + 2y &=& -1\\
x + y &=& 4
\end{array}$$

/7 With more equations than unknowns, likely this system does not have an exact solution. So let's do the best we can. First (and being <u>careful with your arithmetic</u>) find the least squares solution $\hat{\vec{x}}$ to $A\vec{x} = \vec{b}$ where

$$A = \begin{bmatrix} 1 & 3\\ 1 & 2\\ 1 & 1 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}.$$

/2 Compute $A\hat{\vec{x}}$ using the above $\hat{\vec{x}}$ you just found. (Recall that $\hat{\vec{b}} = A\hat{\vec{x}} = Proj_{ColA}\vec{b}$ is the closest we can get to building vector \vec{b} using the columns of A.)

/2 Find $\vec{b} - \hat{\vec{b}}$, and confirm that $\vec{b} - \hat{\vec{b}} \perp$ the columns of A.

Problem 1 continued (careful in doing your arithmetic!)

/6 We still want to find $\operatorname{Proj}_{\operatorname{Col} A} \vec{b}$, where $A = \begin{bmatrix} 1 & 3\\ 1 & 2\\ 1 & 1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 0\\ -1\\ 4 \end{bmatrix}$. But this time we'll do it a bit differently. First, use the Gram-Schmidt Process to construct two orthogonal vectors whose span is the same as the two columns of matrix A. That is, where $\vec{u}_1 = \begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ and $\vec{u}_2 = \begin{bmatrix} 3\\ 2\\ 1 \end{bmatrix}$, find \vec{v}_1 and \vec{v}_2 so that $\operatorname{span}\{\vec{v}_1, \vec{v}_2\} = \operatorname{span}\{\vec{u}_1, \vec{u}_2\}$, but where $\vec{v}_1 \perp \vec{v}_2$.

/7 Of course your \vec{v}_1 and \vec{v}_2 should be orthogonal. Using this fact, find $Proj_{\vec{v}_1,\vec{v}_2}\vec{b}$ (or if you prefer the alternate notation, find $Proj_W\vec{b}$, where $W = span\{\vec{v}_1, \vec{v}_2\}$).

/8 Using your work above, find the QR-factorization of A where Q has orthogonal columns and R is upper triangular. (+1 point extra credit if you find Q and R so that the columns of Q are ortho<u>normal</u>).

12 points 2. We'll determine what a 2×2 matrix A does to a vector by examining the long term behavior of multiplying some vector by A and by A^{-1} .

Given initial vector $\vec{x}_0 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, where $\vec{x}_{k+1} = A \vec{x}_k$, we have (approximately)

k	0	1	•••	10	11
\vec{x}_k	$\begin{bmatrix} 2\\ -1 \end{bmatrix}$	$\begin{bmatrix} 7\\4 \end{bmatrix}$	•••	$\begin{bmatrix} 3 \times 10^5 \\ 3 \times 10^5 \end{bmatrix}$	${9 \times 10^{5} \\ 9 \times 10^{5}}$

and (now using $\vec{x}_0 = \begin{bmatrix} -2\\1 \end{bmatrix}$) where $\vec{x}_{k+1} = \mathbf{A}^{-1} \vec{x}_k$ we have (approximately)

k	0	1	•••	26	27
\vec{x}_k	$\begin{bmatrix} -2\\ 1 \end{bmatrix}$	$[^{0.17}_{1.33}]$	•••	$ \begin{bmatrix} 2 \times 10^{-8} \\ 4 \times 10^{-8} \end{bmatrix} $	$\begin{bmatrix} 1 \times 10^{-8} \\ 2 \times 10^{-8} \end{bmatrix}$

Find $A^3 \vec{x}$ where $\vec{x} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Hint: estimate the eigenvalues and eigenvectors from the above information, find \vec{x} as a linear combination of those two eigenvectors, and then compute $A^3 \vec{x}$.

/8 3. Given functions f(t) = t and $g(t) = t^2$, use the Gram-Schmidt Process to find two functions that are orthogonal under the inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$.

/8 4. Suppose that for two populations (let's say Owls O and Rats R), in month k their populations are O_k and R_k where

 $\begin{array}{l} O_{k+1} = 1.42 \ O_k + 0.02 \ R_k \\ R_{k+1} = 0.08 \ O_k + 1.48 \ R_k \end{array}$ with initial populations of $\begin{bmatrix} O_0 \\ R_0 \end{bmatrix} = \begin{bmatrix} 7 \\ 13 \end{bmatrix}$. The eigenvectors of $\begin{bmatrix} 1.42 & 0.02 \\ 0.08 & 1.48 \end{bmatrix}$ are $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ with corresponding eigenvalues of 1.4 and 1.5 respectively.
Find a general expression/formula for $\vec{x}_k = \begin{bmatrix} O_k \\ R_k \end{bmatrix}$.

/2 Extra credit. The above is the discrete version of this problem. What would the continuous version of this problem be and what would the corresponding solution be?