Name:

Problem	T/F	1	2/3	4	5	Total
Possible	40	26	14	12	8	100
Received						

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3 × 5 card of notes. You will not use a calculator.

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

MUTTS By Patrick McDonnell

- 40 points Answer the following 20 True/False questions. Each question is worth 2 points. Note: "True" means *always true* or *necessarily true*. "False" means that it may be true sometimes or under some circumstances, but not always or not necessarily. <u>No explanation is necessary</u> whether true or false.
 - True False The set of vectors of the form $\begin{cases} a+1\\b\\2b \end{cases}$ (for some *a* and *b*) is a subspace of R^3 .
 - True False For a 2 × 2 matrix, if $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue 4, then $\begin{bmatrix} -15 \\ -5 \end{bmatrix}$ is also an eigenvector with eigenvalue -20.
 - True False Let A be a 5×5 matrix with just two different eigenvalues. It is possible for A to have a complete set of 5 linearly independent eigenvectors.
 - True False If a 8×5 matrix has rank 2, then *nullity* A = 3.
 - True False For a 3×7 matrix A, since there are 4 more columns than rows, the largest possible dimension of Nul A is 4.
 - True False If det $A \neq 0$, then det $(A^{-1}) = \frac{1}{\det A}$.
 - True False For 3×3 matrix A, if $det(A \lambda I) = \lambda^3 \lambda$, then A has no inverse.
 - True False If 3×3 matrix A has eigenvalues of 4, 5 and 6, then the eigenvectors of A form a basis for R^3 .

True False For $v_1, v_2, v_3 \in \mathbb{R}^4$, $Span\{v_1, v_2, v_3\}$ is a subspace of \mathbb{R}^4 .

True False It is possible that $\{v_1, v_3\}$ is a basis for $Span\{v_1, v_2, v_3\}$.

True False If $A\vec{v}_1 = \lambda_1\vec{v}_1$ and $A\vec{v}_2 = \lambda_2\vec{v}_2$ where \vec{v}_1 and \vec{v}_2 are linearly independent, then it must be that $\lambda_1 \neq \lambda_2$.

True False The sum of two eigenvectors of a matrix is an eigenvector of that same matrix.

True False There is a value of k for which $\begin{bmatrix} 1 & 2 \\ 3 & k \end{bmatrix}$ has an eigenvalue of 0.

True False For 3×3 matrix A, $det(-2A^T) = -6 det A$.

True False If the determinant $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 3$, then $\begin{vmatrix} a+2c & b+2d \\ c & d \end{vmatrix} = 3$.

True False The column space of A is the set of all vectors that can be written $A\vec{x}$ for some \vec{x} .

True False If $\{\vec{v}_1, \dots, \vec{v}_7\}$ spans R^7 , then $\{\vec{v}_1, \dots, \vec{v}_7\}$ is linearly independent.

True False If A is a 3×7 matrix, then dim Row A < dim Col A.

- True False The set of matrices $\{ \begin{bmatrix} a & a-b \\ b & c \end{bmatrix} \}$ (for some *a*, *b* and *c*) is a subspace of $M_{2\times 2}$ (the set of all 2 × 2 matrices).
- True False If 3×3 matrix A has rank 2, then $A\vec{x} = \vec{b}$ has an infinite number of solutions for some right hand side \vec{b} , no solution for some other right hand side \vec{b} , and a unique solution for yet another right hand side \vec{b} .

26 points 1. Consider the matrix $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$.

/10 Find the eigenvalues λ_1 and λ_2 and corresponding eigenvectors \vec{v}_1 and \vec{v}_2 of A.

- /1 Once you found the eigenvalues λ_1 and λ_2 (and before you actually found the eigenvectors \vec{v}_1 and \vec{v}_2), how did you know that \vec{v}_1 and \vec{v}_2 would be linearly independent?
- /5 Let *B* be the basis for R^2 formed from eigenvectors \vec{v}_1 and \vec{v}_2 . Where $\vec{x} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, find $[\vec{x}]_B$, the co-ordinates of \vec{x} with respect to *B*. (That is, find c_1 and c_2 so that $\vec{x} = c_1\vec{v}_1 + c_2\vec{v}_2$.)

/8 Where $\vec{x} = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$, find $A^5 \vec{x}$.

5 points 2. Use Cramer's Rule to find x_3 in the linear system $\begin{array}{rcl} 2x_1 & = & 2\\ 3x_1 + 5x_2 & = & -2\\ 4x_1 & + & x_3 & = & 2 \end{array}$

10 points 3. Consider probability matrix $P = \begin{bmatrix} .6 & .3 \\ .4 & .7 \end{bmatrix}$ and initial vector $\vec{x}_0 = \begin{bmatrix} 70 \\ 0 \end{bmatrix}$. Let $\vec{x}_k = A^k \vec{x}_0$.

/1 Find \vec{x}_1 .

/5 Find the eigenvector of P that corresponds to eigenvalue 1.

/2 Find P^{∞} .

/2 Where $\vec{x}_0 = \begin{bmatrix} 70\\0 \end{bmatrix}$, find \vec{x}_{∞} .

12 points 4. Consider matrix A, which is row equivalent to matrix B:

Find the following:

- /2 rank A =
- /2 dim Nul A =
- /2 A basis for *Row A* :

/2 A basis for Col A :

/4 A basis for *Nul A*:

4 points 5. For $n \times n$ matrix A with eigenvalue λ , show that the eigenspace

$$\lambda(A) = \{ \vec{x} : A\vec{x} = \lambda \vec{x} \}$$

is a subspace of \mathbb{R}^n .

4 points 6. If the shape on the left is transformed into the shape on right using the transformation $T(\vec{x}) = A\vec{x}$, where

$$A = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix},$$

what is the area of the shape on right?

