Section 5.4 The Mean Math 141

Main ideas

Sample mean $\bar{x} = x_1 \left(\frac{f_1}{n}\right) + x_2 \left(\frac{f_2}{n}\right) + \dots + x_r \left(\frac{f_r}{n}\right)$ where $\frac{f_i}{n}$ is the fraction of the time each outcome x_i did occur.

Population mean $\mu = x_1 \left(\frac{f_1}{N} \right) + x_2 \left(\frac{f_2}{N} \right) + \dots + x_r \left(\frac{f_r}{N} \right)$ where $\frac{f_i}{N}$ is the fraction of the time each outcome x_i did occur.

Expected value is $E(X) = x_1p_1 + x_2p_2 + \dots + x_Np_N$ where p_i is the fraction of the time each outcome x_i should occur, and:

- Is the average outcome that will occur if the experiment is repeated multiple times and what happens follows what should happen, i.e. it matches the probability distribution.
- Is generally not actually one of the possible values that could occur.
- Is always between the minimum and maximum possible values that could occur.

Given *n* binomial trials with probability of success *p*, where *X* is the number of successes, then the expected value of *X* is E(X) = np.

Problems

1. Suppose I am interested in the number of years each student in class has been at Pepperdine, and I get the following results:

Sample mean. The average number of years each student in our class has been at Pepperdine is:

 $\bar{x} =$

2. Suppose you flip four coins _____ times:

Number of heads	Number of times outcome occurred	Fraction of time outcome <i>did</i> occur
0		
1		
2		
3		
4		

What should have happened:

Number of heads	Fraction of time outcome <i>should</i> occur
0	
1	
2	
3	
4	

Sample mean: the average number of heads that <u>actually</u> occured was:

 $\bar{x} =$

=

Expected value: The average number of heads that should have occured is:

E(X) =

3. Pay \$1 to play a game: flip a coin until you get heads or until you flip the coin four times. You win \$.50 for each flip (you are guaranteed at least one flip: the first flip).

Suppose the following did occur:

Outcome	Winnings x_i	Occurrences f_i
Н	50	
TH	0	
TTH	.50	
TTTH	1.00	
TTTT	1.00	

Sample mean: the average winnings was

 $\bar{x} =$

=

4. Expected return on investments.

Let X_A = return for investment A

k	$\Pr\left(X_A = k\right)$
\$ 1000	.20
\$ 2000	.50
\$ 3000	.30

 $E(X_A) =$

 $E(X_B) =$

Life insurance for couple. Policy is for 5 years.
Payout: \$ 0 if both are still alive.

\$ 10,000 if one dies, the other lives. \$ 15,000 if both die.

Pr(Man lives \geq 5 years) = .90. Pr(Woman lives \geq 5 years) = .95. Let X be payout to couple.

$$E(X) =$$

6. If you are a 70% free throw shooter (p = .70) free throw shooter and you shoot 10 shots (n = 10), and where X is the number of shots made, then (using our work from Class Handout 5.3) we have

E(X) =

Or (much more simply) E(X) =

What should occur, on average:

Outcome	Winnings x_i	Probability p_i
Н	50	
TH	0	
TTH	.50	
TTTH	1.00	
TTTT	1.00	

Expected value: the expected average winnings

$$E(X) =$$

=

Let X_B = return for investment B

k		$\Pr\left(X_B = k\right)$	
-\$ 1	000	.30	
\$	0	.10	
\$4	000	.60	

Man	Woman	Payout	Probability
Live	Live		
Live	Not		
Not	Live		
Not	Not		