Section 4.6 Bayes' Theorem Math 141

<u>Main ideas</u>

Bayes' Theorem: if the sample space $S = E \cup E'$ (everything is either in E or not), then

$$\Pr(E|F) = \frac{\Pr(E \cap F)}{\Pr(F)} = \frac{\Pr(E \cap F)}{\Pr(E \cap F) + \Pr(E' \cap F)} = \frac{\Pr(E) \cdot \Pr(F|E)}{\Pr(E) \cdot \Pr(F|E) + \Pr(E') \cdot \Pr(F|E')}$$

So in order to find Pr(E|F) we use Pr(F|E), plus some other values.

Where the entire sample space can be divided into mutually exclusive (non-overlapping) categories

$$S = E_1 \cup E_2 \cup \dots \cup E_n$$

then

$$\Pr(F) = \Pr(F \cap E_1) + \Pr(F \cap E_2) + \dots + \Pr(F \cap E_n)$$

and

$$\Pr(E_i|F) = \frac{\Pr(E_i \cap F)}{\Pr(F)} = \frac{\Pr(E_i) \cdot \Pr(F|E_i)}{\Pr(E_1) \cdot \Pr(F|E_1) + \dots + \Pr(E_i) \cdot \Pr(F|E_i) + \dots + \Pr(E_n) \cdot \Pr(F|E_n)}$$

Problems

1. Classes and grades.

Class	Fraction of	Fraction of
	all students	group with an A
C1 (freshman)	. 10	. 80
C2 (sophomore)	. 20	.90
C3 (junior)	. 30	. 60
C4 (senior)	. 40	.70

Pr(A) =

Pr(A') =

Notice that .60 < Pr(A) < .90 and .10 < Pr(A') < .40.

 $Pr(C2 \mid A) =$

Why does it makes sense that Pr(C2|A) > Pr(C2)?

Pr(C3|A') =

Why does it make sense that Pr(C3|A') > Pr(C3)

2. Age and gender.

Group	Fraction of population	Fraction of this group that is male
G1 (0 – 5)	.07	.51
G2 (5 – 19)	.25	.51
G3 (20 – 44)	.37	. 49
G4 (45 – 64)	.20	.41
G5 (65 –)	.11	. 40

Prediction: < Pr(M) < .

Pr(M) =

Pr(G1|M) =

Pr(G2|M) =

Pr(G3|M) =

Pr(G4|M) =

Pr(G5|M) =

Group	lf no info	If person	
	on gender	is male	
G1 (0 – 5)	.07	7	
G2 (5 – 19)	.25	7	
G3 (20 – 44)	.37	7	
G4 (45 – 64)	.20	K	
G5 (65 –)	.11	K	

Probability of being in group

3. Approximately 10% of the population is left-handed. A person is on trial for a particular crime. The prosecution has proven with approximately 80% certainty that the defendant committed the crime (without using information about whether the defendant is left- or right-handed). In addition, the prosecution has proven that the person who did commit the crime is left-handed. The defendant is left-handed. With the additional information that crime was committed by a left-handed person and that the defendant is left-handed, how likely is it he actually committed the crime?

4. According to a NY Times article, about 2% of women aged 40 to 49 years old develop breast cancer during that decade of her life. But the mammogram used for women in that age group has a high rate of false positives and false negatives. The false positive rate is .30 and the false negative rate is .25. If a woman in her 40s has a positive mammogram test result, what is the probability that she actually has breast cancer? (More on medical testing next class.)

5. 10% percent of the pens made by Apex are defective. Only 5% made by its competitor, B-ink, are defective. Since Apex pens are cheaper than B-ink pens, an office orders 70% of its stock from Apex and 30% from B-ink. A pen is chosen at random and found to be defective. What is the probability that it was produced by Apex?