## Main ideas

Sensitivity is Pr(+|C). Specificity is Pr(-|C'). Positive predictive value is Pr(C|+). Negative predictive value is Pr(C'|-).

## **Problems**

A medical test checks for a certain condition.
 95% of those with condition test positive
 5% of those with condition test negative
 2% of those without condition test positive
 98% of those without condition test negative.
 In the general population, from past experience:
 0.5% of the population has the condition
 99.5% of the population does not have the condition.

$$\Pr(C|+) = \frac{\Pr(C \ and \ +)}{\Pr(+)} = \frac{\Pr(C \ and \ +)}{\Pr(C \ and \ +) + \Pr(not \ C \ and \ +)} = \frac{(.005)(.95)}{(.005)(.95) + (.995)(.02)} = \frac{.00475}{.02465} \approx .1927$$

$$\Pr(not \ C|+) = \frac{\Pr(not \ C \ and \ +)}{\Pr(+)} = \frac{\Pr(not \ C \ and \ +)}{\Pr(C \ and \ +) + \Pr(not \ C \ and \ +)} = \frac{(.995)(.02)}{(.005)(.95) + (.995)(.02)} = \frac{.01990}{.02465} \approx .8073$$

$$\Pr(C|-) = \frac{\Pr(C \ and \ -)}{\Pr(-)} = \frac{\Pr(C \ and \ -) + \Pr(not \ C \ and \ -)}{\Pr(C \ and \ -) + \Pr(not \ C \ and \ -)} = \frac{(.005)(.05)}{(.005)(.05) + (.995)(.98)} = \frac{.00025}{.97535} \approx .0003$$

$$\Pr(not \ C|-) = \frac{\Pr(not \ C \ and \ -)}{\Pr(-)} = \frac{\Pr(not \ C \ and \ -)}{\Pr(C \ and \ -) + \Pr(not \ C \ and \ -)} = \frac{(.995)(.98)}{(.005)(.05) + (.995)(.98)} = \frac{.97510}{.97535} \approx .9997$$

|           | Results of test |            |            |  |
|-----------|-----------------|------------|------------|--|
|           | No Test         | Positive + | Negative – |  |
| Pr(C)     | .005            | . 1927     | .0003      |  |
| Pr(not C) | . 995           | .8073      | . 9997     |  |

Notice sum of Pr(C) and Pr(not C) in each case.

Another view of why this occurs: "<u>Natural Frequencies</u>." Same info as before:

95% of those with the condition test positive

5% of those with condition test negative

2% of those not with the condition test positive

98% of those not with the condition test negative.

In the general population:

= \_

= \_\_\_\_

=

= \_\_\_\_\_

0.5% of the population has the condition

99.5% of the population does not have the condition.

| Condition | Test | Persons of this type ("Natural Frequencies") |
|-----------|------|----------------------------------------------|
| Yes       | +    | (.005)(1,000,000)(.95) =                     |
| Yes       | -    | (.005)(1,000,000)(.05) =                     |
| No        | +    | (.995)(1,000,000)(.02) =                     |
| No        | -    | (.995)(1,000,000)(.98) =                     |

Pr(C) = \_\_\_\_\_ = \_\_\_\_ =

Pr(C|+) = \_\_\_\_\_

| 2. | Effects | of c | hanging | values: |
|----|---------|------|---------|---------|
|----|---------|------|---------|---------|

| Pr(C) = .005<br>Pr(C') = .995<br>Pr(+ C) = .95<br>Pr(- C) = .05<br>Pr(+ C') = .02<br>Pr(- C') = .98          | Pr(C +) =                                                                                                          |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Pr(C) = .05<br>Pr(C') = .95<br>Pr(+ C) = .95<br>Pr(- C) = .05<br>Pr(+ C') = .02<br>Pr(- C') = .98            | Pr(C) = .005<br>Pr(C') = .995<br>Pr(+ C) = .5<br>Pr(- C) = .5<br>Pr(+ C') = .5<br>Pr(- C') = .5                    |
| Pr(C +) =                                                                                                    | Pr(C +) =                                                                                                          |
| =                                                                                                            | =                                                                                                                  |
| Pr(C) = .005 $Pr(C') = .995$ $Pr(+ C) = 1$ $Pr(- C) = 0$ $Pr(+ C') = .02$ $Pr(- C') = .98$ $Pr(C +) =$       | Pr(C) = .005 $Pr(C') = .995$ $Pr(+ C) = .95$ $Pr(- C) = .05$ $Pr(+ C') = 0$ $Pr(- C') = 1$ $Pr(C +) =$             |
| =                                                                                                            | =                                                                                                                  |
| Pr(C) = .005 $Pr(C') = .995$ $Pr(+ C) = .95$ $Pr(- C) = .05$ $Pr(+ C') = .02$ $Pr(- C') = .98$ $Pr(C +,-) =$ | Pr(C) = .005<br>Pr(C') = .995<br>Pr(+ C) = .95<br>Pr(- C) = .05<br>Pr(+ C') = .05<br>Pr(- C') = .95<br>Pr(C +,-) = |
| =                                                                                                            | =                                                                                                                  |

 A drug-testing lab produces false negative results 2% of the time and false positives 5% of the time. Suppose that the laboratory has been hired by a company at which they estimate that 10% of the employees use drugs. Let U be "is drug user," + be "tests positive," and – be "tests negative."



Pr (+) = Pr (U and + +) = Pr (++) = Pr (+++) = Pr (+ n times) = (.10)(.98)<sup>n</sup> + (.90)(.05)<sup>n</sup> → as n →∞.

 $\Pr(U|+) =$ 

 $\Pr(U| + +) =$ 

 $\Pr(U|+n \text{ times}) = \frac{\Pr(U \text{ and } + n \text{ times})}{\Pr(+n \text{ times})} = \frac{(.10)(.98)^n}{(.10)(.98)^n + (.90)(.05)^n} \to \qquad \text{ as } n \to \infty.$ 

 $\Pr(U|+,-) =$ 

Pr(++|+) =

Pr(+++|++) =

 $\Pr(+ again \mid + n \text{ times}) = \frac{\Pr(+ n + 1 \text{ times})}{\Pr(+ n \text{ times})} = \frac{(.10)(.98)^{n+1} + (.90)(.05)^{n+1}}{(.10)(.98)^n + (.90)(.05)^n} \to as n \to \infty.$