Section 4.2 Assignments of Probabilities Math 141

<u>Main ideas</u>

For event E and sample space S:

n(E) is the number of outcomes in event E

n(S) is the number of outcomes in the sample space, i.e. the total number of outcomes Pr(E) is the probability of event E.

Properties of probabilities:

 $\Pr(E) = \frac{n(E)}{n(S)}$

 $0 \le \Pr(E) \le 1$ (why decimal values rather than percentages? "per cent" means "per 100") If E can occur in multiple ways {s, t, u, ..., z}, then $\Pr(E) = \Pr(s) + \Pr(t) + \Pr(u) + ... + \Pr(z)$ For $S = \{s_1, s_2, ..., s_N\}$ with probabilities $\{p_1, p_2, ..., p_N\}$, then $p_1 + p_2 + \cdots + p_N = 1$. $\Pr(E) + \Pr(E') = 1$ (more on this in Section 4.3).

Inclusion-exclusion principle:

Sets:	$n(E \cup F) = n(E) + n(F) - n(E \cap F)$
Probabilities:	$Pr(E \cup F) = Pr(E) + Pr(F) - Pr(E \cap F)$

Mutually exclusive:

Sets:	$E \cap F = \emptyset$, $n(E \cap F) = 0$
Probabilities:	$Pr(E \cap F) = 0$

Probability distribution: the possible outcomes and the probability of each.

Problems

1.	Roll 2 dice. We are interested in the sum.
	Event E is "sum is ≥ 7"
	Event F is "sum is odd"
	Event G is "doubles"

		Su	m of 2	2 dice		
	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

Pr(E) =

Pr(F) =

 $Pr(E \cap F) =$

 $Pr(E \cup F) =$

Pr(E') =

Pr(G) =

 $Pr(F \cup G) =$

Probability distributions:

Sum of 2 dice			
Outcome	Probability		
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

Differenc	e of 2 dice
Outcome	Probability

Sum of 2 dice						
1	2	3	4	5	6	
2	3	4	5	6	7	
3	4	5	6	7	8	
4	5	6	7	8	9	
5	6	7	8	9	10	
6	7	8	9	10	11	

Difference between 2 dice

7 8 9 10 11 12

	1	2	3	4	5	6
1	0	1	2	3	4	5
2 3	1	0	1	2	3	4
3	2	1	0	1	2	3
4	З	2	1	0	1	2
5	4	З	2	1	0	1
6	5	4	3	2	1	0

2. Use the probability distribution at right. Let E = $\{s_1, s_2\}$, F = $\{s_2, s_3, s_4\}$.

Pr(E) =

Pr(F) =

 $Pr(E \cap F) =$

 $Pr(E \cup F) =$

 $Pr(E \cap F') =$

Notice:

<i>s</i> ₁	.10
<i>s</i> ₂	.20
<i>s</i> ₃	.40
<i>S</i> ₄	.05

Outcome

 S_5

Probability

3. Flip 6 coins. We are interested in how many are heads. Find the probability distribution.

# of heads	Probability
0	
1	
2	
3	
4	
5	
6	

Preview of how probabilities are affected by additional information

- 4. Two coins are tossed. What is the probability both coins are heads?
- 5. Two coins are tossed. We are told that at least one of the coins is heads. What is the probability both coins are heads?
- 6. Two coins are tossed. We can see one of the coins, and we see that it is heads. What is the probability both coins are heads?