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ost of our applications of calculus have involved functions of one variable. In real
life, however, a quantity of interest often depends on more than one variable.
For instance, the sales level of a product may depend not only on its price, but also
on the prices of competing products, the amount spent on advertising, and perhaps
the time of year. The total cost of manufacturing the product depends on the cost of
raw materials, labor, plant maintenance, and so on.

This chapter introduces the basic ideas of calculus for functions of more than one
variable. Section 1 presents two examples that will be used throughout the chapter.
Derivatives are treated in Section 2 and then used in Sections 3 and 4 to solve op-
timization problems more general than those you may have encountered before. The
final two sections are devoted to least-squares problems and a brief introduction to
the integration of functions of two variables.

1 Examples of Functions of Several Variables

A function f(z,y) of the two variables © and y is a rule that assigns a number to each
pair of values for the variables; for instance,

fz,y) = € (2 +2y)-
An example of a function of three variables is

f(=,y,2) = 5ay’z.

EXAMPLE 1 A Function with Two Variables A store sells butter at $2.50 per pound and margarine
at $1.40 per pound. The revenue from the sale of  pounds of butter and y pounds of
margarine is given by the function

f(z,y) = 2.50z + 1.40y.
Determine and interpret f(200,300).

SOLUTION  £(200,300) = 2.50(200) + 1.40(300) = 500 + 420 = 920. The revenue from the sale of
200 pounds of butter and 300 pounds of margarine is $920. » Now Try Exercise 1
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EXAMPLE 2

Functions of Several Variables

A function f(z,y) of two variables may be graphed in a manner analogous to that
for functions of one variable. It is necessary to use a three-dimensional coordinate
system, where each point is identified by three coordinates (z,y,2). For each choice
of z, y, the graph of f(z,) includes the point (z,y, f(z,y)). This graph is usually
a surface in three-dimensional space, with equation z = J(z,y). (See Fig. 1.) Three
graphs of specific functions are shown in Fig. 2.
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Figure 1 Graph of f(z, y). Figure 2

Applicafion to Architectural Design When designing a building, we would like
to know, at least approximately, how much heat the building loses per day. The heat
loss affects many aspects of the design, such as the size of the heating plant, the size
and location of duct work, and so on. A building loses heat through its sides, roof, and
floor. How much heat is lost will generally differ for each face of the building and will
depend on such factors as insulation, materials used in construction, exposure (north,
south, east, or west), and climate. It is possible to estimate how much heat is lost per
square foot of each face. Using these data, we can construct a heat-loss function as in
the following example.

Heat-Loss Function A rectangular industrial building of dimensions z,y, and z is shown
in Fig. 3(a). In Fig. 3(b), we give the amount of heat lost per day by each side of the
building, measured in suitable units of heat per square foot. Let f(z,y, z) be the total
daily heat loss for such a building.

(a) Find a formula for f(z,y, z).

(b) Find the total daily heat loss if the building has length 100 feet, width 70 feet,
and height 50 feet.
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Functions of Several Variables
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Figure 3 Heat loss from an industrial building.

SOLUTION

EXAMPLE 3

(a) The total heat loss is the sum of the amount of heat loss through each face of the
building. The heat loss through the roof is

[heat loss per square foot of roof]- [area of roof in square feet] = 10zy.

Similarly, the heat loss through the east side is 8yz. Continuing in this way, we
see that the total daily heat loss is

f(z,y,2) = 10zy + 8yz + 6yz + 10z2 + 52z + 1 - zY.
We collect terms to obtain
f(z,y,2) = llzy + 14yz + 15z2.

(b) The amount of heat loss when z = 100, y = 70, and z = 50 is given by
£(100,70, 50), which equals

£(100,70,50) = 11(100)(70) + 14(70)(50) + 15(100)(50)
= 77,000 + 49,000 + 75,000 = 201,000.
» Now Try Exercise 7

In Section 3, we will determine the dimensions z, ¥, 2 that minimize the heat loss
for a building of specific volume.

Production Functions in Economics The costs of a manufacturing process can
generally be classified as one of two types: cost of labor and cost of capital. The mean-
ing of the cost of labor is clear. By the cost of capital, we mean the cost of buildings,
tools, machines, and similar items used in the production process. A manufacturer
usually has some control over the relative portions of labor and capital utilized in
its production process. It can completely automate production so that labor is at a
minimum or utilize mostly labor and little capital. Suppose that z units of labor and
y units of capital are used. (Economists normally use L and K, respectively, for labor
and capital. However, for simplicity, we use z and y.) Let f(z,y) denote the number of
units of finished product that are manufactured. Economists have found that f(z,y)
is often a function of the form

fz,y) = Czty' ™4,

where A and C are constants, 0 < A < 1. Such a function is called a Cobb-Douglas
production function.

Production in @ Firm Suppose that, during a certain time period, the number of

units of goods produced when z units of labor and y units of capital are used is

f(z,y) = 604y

(a) How many units of goods will be produced by 81 units of labor and 16 units of
capital?

(b) Show that, whenever the amounts of labor and capital being used are doubled,
so is the production. (Economists say that the production function has “constant
returns to scale.”)
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Functions of Several Variables

(a) f(81,16) = 60(81)%*-(16)¥4 = 60-27-2 = 3240. There will be 3240 units of
goods produced.

(b) Utilization of a units of labor and b units of capital results in the production of
f(a,b) = 60a*¥*bY* units of goods. Utilizing 2a and 2b units of labor and capital,
respectively, results in f(2a, 2b) units produced. Set = = 24 and y = 2b. Then, we
see that

f(2a,2b) =60(2a)>*(2b)/*
= 60234 . g3 . QU4 pI/A
= 60.203/4+1/4) , ;3/4p1/4
= 2" 60g%4p!*
=2f(a,b). » Now Try Exercise 9

Level Curves It is possible graphically to depict a function f(z,y) of two variables
using a family of curves called level curves. Let ¢ be any number. Then, the graph of
the equation f(z,y) = cis a curve in the ry-plane called the level curve of height c.
This curve describes all points of height ¢ on the graph of the function f(z,y). As ¢
varies, we have a family of level curves indicating the sets of points on which f (z,y)
assumes various values ¢. In Fig. 4, we have drawn the graph and various level curves
for the function f(z,y) = z2 + 2.

Level curves often have interesting physical interpretations. For example, surveyors
draw topographic maps that use level curves to represent points having equal altitude.
Here f(x,y) = the altitude at point (z,y). Figure 5(a) shows the graph of flz,y)
for a typical hilly region. Figure 5(b) shows the level curves corresponding to various
altitudes. Note that when the level curves are closer together the surface is steeper.
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Figure 5 Topographic level curves show altitudes.
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Functions of Several Variables

EXAMPLE 4 Level Curves

Determine the level curve at height 600 for the production function

f(z,y) = 60z%1y"* of Example 3.

SOLUTION

201

10

Labor
Figure 6 A level curve of a
production function.

Check Your Understanding 1

be positive. We have ske

The level curve is the graph of f(z,y) = 600, or

602¥4y"* = 600

10

Y e

yo = o
10,000
y="—"

€T

Of course, since & and y represent quantities of labor and capital, they must both
tched the graph of the level curve in Fig. 6. The points on
the curve are precisely those combinations of capital and labor that yield 600 units of
production. Economists call this curve an 1soquant.

» Now Try Exercise 15

1

Let f(z,y,2) = z° +y/@ — z) — 4. Compute f(3,5, 2).

EXERCISES 1

. In a certain country the daily demand for coffee is given

by f(p1,p2) = 16p1/p2 thousand pounds, where p; and p»
are the respective prices of tea and coffee in dollars per
pound. Compute and interpret f(3, 4).

3 0

Let f(z,y) = @ — 3xy — y*. Compute f(5,0), f(5,—-2),
and f(a,b).

. Let g(z,y) = /z* + 2y*. Compute g(1,1), g(0,—1), and
g(a,b).

. Let g(z,y,2) = a/(y — z). Compute g(2,3,4) and
g(7,46,44).

. Let f(z,y,2) = z2eV¥?+2* | Compute f(1,—1,1) and

f(2,3,-4).

. Let f(w,y) = xy. Show that f(2+h,3)— f(2,3) = 3h.

6. Let f(z,y) = xy. Show that f(2,3 + k) — f(2,3) = 2k.

. Cost Find a formula C(z,y,z) that gives the cost of ma-

terials for the closed rectangular box in Fig. 7(a), with
dimensions in feet. Assume that the material for the top
and bottom costs $3 per square foot and the material for
the sides costs $5 per square foot.

(a) (b)

Figure 7

10.
11.

12.

13.

. Consider

. Cost Find a formula C(z,v, z) that gives the cost of mate-

rial for the rectangular enclosure in Fig. 7(b), with dimen-
sions in feet. Assume that the material for the top costs
$3 per square foot and the material for the back and two
sides costs $5 per square foot.

the Cobb-Douglas production function
f(z,y) = 20z3y*. Compute f(8,1), f(1,27), and
f(8,27). Show that, for any positive constant K,
f(8k,27k) = kf(8,27).

Let f(z,y) = 10z*°y%°. Show that f(3a,3b) = 3f(a,b).

Present Value The present value of A dollars to be paid
¢ years in the future (assuming a 5% continuous in-
terest rate) is P(A,t) = Ae "'. Find and interpret
P(100,13.8).

Refer to Example 3. If labor costs $100 per unit and cap-
ital costs $200 per unit, express as a function of two vari-
ables, C(x,y), the cost of utilizing « units of labor and y
units of capital.

Tax and Homeowner Exemption The value of residential
property for tax purposes is usually much lower than its
actual market value. If v is the market value, the assessed
value for real estate taxes might be only 40% of v. Sup-
pose that the property tax, T', in a community is given by
the function
T = f(r,v,z) = %6('40” ~ ),

where v is the estimated market value of a property (in
dollars), @ is a homeowner’s exemption (a number of



Functions of Several Variables

dollars depending on the type of property), and r is the  Match the graphs of the functions in Exercises 23-26 to the systems of
tax rate (stated in dollars per hundred dollars) of net level curves shown in Figs. 8(a)~(d).
assessed value. 23.

(a) Determine the real estate tax on a property valued
at $200,000 with a homeowner’s exemption of $5000,
assuming a tax rate of $2.50 per hundred dollars of
net assessed value.

(b) Determine the tax due if the tax rate increases by
20% to $3.00 per hundred dollars of net assessed
value. Assume the same property value and home-
owner’s exemption. Does the tax due also increase
by 20%?

14. Tax and Homeowner Exemption Let f (r,v,z) be the real
estate tax function of Exercise 13.

(a) Determine the real estate tax on a property valued
at $100,000 with a homeowner’s exemption of $5000, 24.
assuming a tax rate of $2.20 per hundred dollars of
net assessed value.

(b) Determine the real estate tax when the market value
rises 20% to $120,000. Assume the same homeowner’s
exemption and a tax rate of $2.20 per hundred dollars

of net assessed value. Does the tax due also increase
by 20%?

Draw the level curves of heights 0, 1, and 2 for the functions in
Exercises 15 and 16.

15. f(z,y) =2z -y 16. f(z,y) = —a® + 2y
17. Draw the level curve of the function f(z,y) =z —y con-
taining the point (0,0). 25.

18. Draw the level curve of the function f(z,y) = zy contain-
ing the point (%,4).

2

19. Find a function f(z,y) that has the line y=3r—-4asa
level curve.

20. Find a function f(z,y) that has the curve y = 2z* as a
level curve.

21. Suppose that a topographic map is viewed as the graph 26.
of a certain function f(z.y). What are the level curves?

22. Isocost Lines A certain production process uses labor and
capital. If the quantities of these commodities are z and
Y, respectively, the total cost is 100z + 200y dollars. Draw
the level curves of height 600, 800, and 1000 for this func-
tion. Explain the significance of these curves. (Economists
frequently refer to these lines as budget lines or isocost
lines.)

Y

==

(a) (b) (c) (d)
Figure 8




Functions of Several Variables

Solutions to Check Your Understanding 1

1. Substitute 3 for z, 5 for y, and 2 for 2.
5
5N=3 4+ ———-4=
f(3,5,2) =3 —i-3_2 4=10

Therefore, if the price of tea is $3 per pound and the price
of coffee is $4 per pound, 12,000 pounds of coffee will be
sold each day. (Notice that as the price of coffee increases

2. To compute f(3,4), substitute 3 for p; and 4 for p, into the demand decreases.)

f(p1,p2) = 16py/p2. Thus,

f(374)=1

63 =12

2 Partial Derivatives

EXAMPLE 1

SOLUTION

We have introduced the notion of a derivative to measure the rate at which a function
f(z) is changing with respect to changes in the variable z. Let us now study the analog
of the derivative for functions of two (or more) variables.

Let f(x,y) be a function of the two variables z and y. Since we want to know how
f(z,y) changes with respect to the changes in both the variable z and the variable y,
we shall define two derivatives of f(z,y) (to be called partial derivatives), one with
respect to each variable.

DEFINITION The partial derivative of f(x,y) with respect to x, written g—i, is the

derivative of f(x,y), where y is treated as a constant and f(z,y) is considered a
function of z alone. The partial derivative of f(x,y) with respect to y, written b;,

is the derivative of f(zx,y), where z is treated as a constant.

Computing Partial Derivatives Let f(z,y) = 52°y%. Compute

of of
g and y

To compute %, we think of f(z,y) written as

ox
fla,y) = [5y%] 2°,
where the brackets emphasize that 5y° is to be treated as a constant. Therefore, when
differentiating with respect to x, f(,y) is just a constant times o3, If k is any constant,
then
—q—(kﬁ) =3.k-2%
dx

Thus,

0
2L 3.[5¢%] - 2% = 1522y
g [5y°] y
After some practice, it is unnecessary to place the y* in front of the 23 before differ-
entiating.

0
Now, to compute a—{l, we think of

f(a:,y) B [51;3]:‘/2'
When we are differentiating with respect to y, f(z,y) is simply a constant (that is,

5z%) times y*. Hence,

0 ; ,
of =2.[52%] .y = 10°y. .
oy » Now Try Exercise 1



Functions of Several Variables

EXAMPLE 2 Computing Partial Derivatives Let f(z,y) = 32% + 2y + 5y. Compute

af af

- d —.

or " Ay

of .
SOLUTION  To compute 30 Ve think of
f(z,y) = 32" + 2]z + [5y].

Now, we differentiate f(z,y) as if it were a quadratic polynomial in z:

8—f=6:r+[2y]+0:6x+2y.
Oz

Note that we treat 5y as a constant when differentiating with respect to z, so the
partial derivative of 5y with respect to z is zero.

To compute =—, we think of
dy

f(@,y) = [82°] + 2]y + 5y.

Then,

0

of =0+ [2z] + 5 =2z + 5.

dy
Note that we treat 3z as a constant when differentiating with respect to y, so the
partial derivative of 3z% with respect to Yy is zero. » Now Try Exercise 3

EXAMPLE 3 Differentiation Rules and Partial Derivatives Compute

of of
37 and 5@7
for each of the following.
(a) f(z,y) = (4o + 3y — 5)° (b) f(z,y) = eV’ (c) flz,y) = ylz + 3y)

SOLUTION (a) To compute gj—;, we think of

f(@,y) = (4o + [3y - 5))%.
By the general power rule,

0
-a—ic =8 (4r+ [y —5))" 4= 32(4x + 3y — 5)".
Here, we used the fact that the derivative of 4z + 3y — 5 with respect to z is
just 4.
of ;
To compute —~, we think of

dy
F(z,y) = ([4a] + 3y — 5)%.
Then,
g_;:_ = 8- ([42] + 3y — 5)7 -3 = 24(dz + 3y — 5)".

(b) To compute %, we observe that

flay) =W,

so that
g_£ — [yQJ eVl — y‘le-"!ﬂ_
To compute ﬂ, we think of
dy

f(z,y) = el

Thus,
% = elelv? 2lzly = 2:1:ye"’-”2.



EXAMPLE 4

SOLUTION

Functions of Several Variables

J
(¢) To compute 8_£’ we use the general power rule to differentiate [y](z + [3y]) ' with
respect to x:

G B R R s
af . . :
To compute @, we use the quotient rule to differentiate
Y
flz,y) = =+ 3y

with respect to y. We find that

of (l+3y)1-y3__ @

ay~ (el+3)? (@+3y)”

The use of brackets to highlight constants is helpful initially when we compute
partial derivatives. From now on, we shall merely form a mental picture of those
terms to be treated as constants and dispense with brackets. » Now Try Exercise 9

A partial derivative of a function of several variables is also a function of several
variables and hence can be evaluated at specific values of the variables. We write

9 (a,1)
of ox
for 9z evaluated at © = a, y = b. Similarly,
of
—(a,b
a ay (a? )
denotes the function a—i evaluated at x = a, y = b.
Evaluating Partial Derivatives Let f(z,y) = 32 + 2zy + 5y.
of of ) B
(a) Calculate %(1,4). (b) Evaluate By at (z,y) = (1,4).
af of
o = 2,4 =6 4=14
(a) o 6x + 2y, ax(l’ y)=6-142
of af B B
R} %_2m+5’ By(1’4)—2'1+5_7 » Now Try Exercise 19

Geometric Inferpretation of Partial Derivatives  Consider the three-dimensional
surface z = f(z,y) in Fig. 1. If y is held constant at b and z is allowed to vary, the
equation

constant
describes a curve on the surface. [The curve is formed by cutting the surface z = f (z,y)
with a vertical plane parallel to the zz-plane.] The value of —55(11, b) is the slope of

the tangent line to the curve at the point where z = a and y = b.
Likewise, if z is held constant at a and y is allowed to vary, the equation

z = f(a,y)

constant
describes the curve on the surface z = f(z,y) shown in Fig. 2. The value of the partial

derivative g—f(a, b) is the slope of this curve at the point where z = a and y = b.
Y
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Slope of

4— tangent line Slope of

tangent line

(a, b). af
is == (a. b).
- dy (a, b) Surface
Surface z = f(z, y)
z= flz,y)
A e y
/ Curve Curve
x x
z = f(z. b) z = fla, y)
Figure 1 f—:,i gives the slope of a curve Figure 2 g{l— gives the slope of a curve
formed by holding y constant. formed by holding & constant.

EXAMPLE 5

SOLUTION

Partial Derivatives and Rates of Change  Since g—g is simply the ordinary deriva-
tive with y held constant, g— gives the rate of change of f(z,y) with respect to z for
y held constant. In other words, keeping y constant and increasing by one (small)
unit produces a change in f(z,y) that is approximately given by % An analogous

interpretation holds for g_.{;

Interpreting Partial Derivatives Interpret the partial derivatives of
fz,y) = 32* 4 2xy + 5y calculated in Example 4.

We showed in Example 4 that

af B of B
83:(1’4) = 14, 5&(1,4) =7
The fact that of
%(1,4) =14

means that if y is kept constant at 4 and z is allowed to vary near 1, then f(z,y)
changes at a rate 14 times the change in x. That is, if 2 increases by one small unit,
f(z,y) increases by approximately 14 units. If z increases by h units (where 4 is small),
f(z,y) increases by approximately 14 - 4 units. That is,

F(1+h,4)— f(1,4) ~ 14-h.

Similarly, the fact that

of

—(1,4) =7

S-(L4)
means that, if we keep x constant at 1 and let y vary near 4, then f(x,y) changes at
a rate equal to seven times the change in y. So, for a small value of k, we have

f(L4+k)— f(1,4) ~ T k. » Now Try Exercise 21
. . ! of aF . . .
We can generalize the interpretations of 3z and 7, given in Example 5 to yield

9y

the following general fact:



EXAMPLE 6

SOLUTION

EXAMPLE 7

SOLUTION

EXAMPLE 8

SOLUTION

Functions of Several Variables

Let f(z,y) be a function of two variables. Then, if h and k are small, we have

flat hb)— fa,D) = o (@) h
Ha,bH k) — fla,b) %(a,b) *

Partial derivatives can be computed for functions of any number of variables.
When taking the partial derivative with respect to one variable, we treat the other
variables as constant.

Partial Derivatives Let f(z,y,z) = ?yz — 3z.

of of of of
(a) Compute % 9y’ and 3 (b) Calculate e (2,3,1).

af of o Of _ o
(a) Bm—mez’ ay—:cz, az—my 3

of
(b) 5;(2,3,1)=22-3—3=12——3=9 » Now Try Exercise 15

Heat-Loss Function Let f(z,y,z) be the heat-loss function computed in Example 2 of

Section 1. That is, f(z,y, z) = llay+14yz+15z2. Calculate and interpret g—i(w, 7,5).

We have

af
7z =11y + 152

of

ax(10,7,5)=11-7—|—15-5=’77—+~75=152.

9] . )
The quantity 55 is commonly referred to as the marginal heat loss with respect to

change in x. Specifically, if z is changed from 10 by h units (where h is small) and
the values of y and z remain fixed at 7 and 5, the amount of heat loss will change by

approximately 152 - h units. b Now Try Exercise 31

Marginal Productivity of Capital Consider the production function f(z, y) = 60z 4y,
which gives the number of units of goods produced when z units of labor and y units
of capital are used.

of

; of
(a) Find 3z and e

of of _ _
(b) Evaluate 32 and 5; at = = 81, y = 16.

(c) Interpret the numbers computed in part (b).
Y4

of S g
(a) 5 =60-3@ Ay = 45z~ My = 455

of 1 3a,-3/4 3/4,,~3/4 o

of 164 g
(b)b—m(81,16)—45-—8—17/1—45-§_30

of 8194 27 405 g

L= g =y =g T

11
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EXAMPLE 9

SOLUTION

Functions of Several Variables

(c) The quantities g and ? are referred to as the marginal productivity of labor
€z Y

and the marginal productivity of capital. If the amount of capital is held fixed

at y = 16 and the amount of labor increases by 1 unit from 81, the quantity of

goods produced will increase by approximately 30 units. Similarly, an increase in

capital of 1 unit (with labor fixed at 81) results in an increase in production of

approximately 50§ units of goods. » Now Try Exercise 25

Just as we formed second derivatives and derivatives of higher order in the case
of one variable, we can form second partial derivatives and derivatives of higher order

. - of . .
of a function f(z,y) of two variables. Since of is a function of = and y, we can

ox

differentiate it with respect to x or y. The partial derivative of E)_f with respect to z is
z

O f wad e BF ; o’ f
denoted by R The partial derivative of 3z with respect to y is denoted by 9y 07"

o o Of :
Similarly, the partial derivative of the function 8_;; with respect to  is denoted by
9 2

m, and the partial derivative of —g—;: with respect to y is denoted by g—yg Almost
all functions f(z,y) encountered in applications [and all functions f(x,y) in this text]
have the property that

f  0f

dydx  Oxdy’
*f *f

By Oz and m, note that verifying the last equation is a check

that you have done the differentiation correctly.

When computing

Partial Derivatives of Higher Order Let f(z, y) = 2% + 3zy + 2y%. Calculate

ox?’ Oy’ dzoy’ Ay ox”
First, we compute ﬂ and %
ox oy

of , of

& . o OF
To compute 2.2 Ve differentiate 5{ with respect to z:
T

82f
=

2 0
Similarly, to compute —=%, we differentiate —f with respect to y:
oy? Ay

02
Oy?
To compute o we differentiate of with respect to z
— — C :
B Oz dy dy D ©

g

dxdy &

2 o f
Finally, to compute —=—, we differentiate —- with res ect to v:
Yy p By or’ or p Y

o’ f _3
oyox » Now Try Exercise 23



INCORPORATING

Functions of Several Variables

TECHNOLOGY

EB Evaluating Partial Derivatives The function from Example 4 and its first partial
derivatives are specified in Fig. 3(a) and evaluated in Fig. 3(b). Recall that the
expression 1 — X is entered with and indicates that we are setting
X = 1. The expression 4 — Y has a similar meaning, but the variable Y is entered by
means of [Y]. We can als<2) evaluate other partial derivatives. For example, we

can find the partial derivative in this case by setting Yy = nDeriv (Y3, X, X).

Oz dy

Flokl Plotz Flots 1+ gy
Wy =3&x2+2>w+5v , &
we =g O 2 ey &

d 14
sWr=gr e ey Wz
shy= v
wMe=
(a) (b)
Figure 3
Check Your Understanding 2
1. The number of TV sets an appli'ance store sells per wee_k (b) Would you expect ﬂ(400’2000) $o be positive or
is given by a function of two variables, f(z,y), where x is ‘ Ay
the price per TV set and y is the amount of money spent negative?
weekly on advertising. Suppose that the current price is 2. The monthly mortgage payment for a house is a function
$400 per set and that currently $2000 per week is being of two variables, f(A,r), where A is the amount of the
spent for advertising. mortgage and the interest rate is ra%. For a 30-year mort-
e
(a) Would you expect —g—f(400,2000) to be positive or gage, [(92,000,3.5) = 412.78 and _1“(92’000’ 3.5) = 38.47.
negative? ! What is the significance of the number 38.477
EXERCISES 2
. 110 of ; ' 9 . ., of
Find 2L and 2L for each of the following functions. 19. Let f(z,y) = @ + 2zy +y* + 3z +5y. Find --(2, -3)
oz oy 5 oz
1. f(z,y) =5y 2. f(z,y) =2* — ¢’ and 55(2,—3).
3. f(z,y) = 2z%e! 4. f(z,y) = xe® af af
z 1 20. Let f(z,y) = (z +y*)*. Evaluate o and e at
5. f(zay)=—+_ 6. f($,y)= & Y
y @ z+y (z,y) = (1,2).
€ R a ;
7. flz,y) =2z -y +5)?2 8. f(z,y) = 1—%7 21. Let f(z,y) = @y® + 5. Evaluate b—g at (z,y) = (2,-1)
9. f(a:,y) =22e% Iny 10. f(m,y) — ln(wy) and interpret your result. 5
z
-y 3 3 =—.0 te =—(2,1) and int t ;
11. f(z,y) = o 12. f(z,y) = m 22. Let f(z,y) = ompute 8y( ) and interpret your
o) result.
A 2 2 2
13. Let f(L,K) =3V LK. Find 3L 23. Let f(z,y) = =y + 2zy°. Find 8_£7 _‘9_f, o f , and
0x?’ Oy?’ dxdy
14. Let f(p,q) = 1 —p(1 +¢q). Find of and o/ o f
b i dq ap dy oz’
. of of of o*f 9*f Of
= 29)/z. -, —,and =-. = ze! 4 3. Find —, —, =———
15. Let f(z,y,2) = (1 + 2°y)/z. Find Bz’ By’ 8B, 57 24. Let f(z,y) = ze’ +a'y+y°. Find 922" 3y% 0w 0y’ and
) v g OF Of af o0*f
16. Let f(z,y,2) = ze™?. Find e 5&, and Ba" By 0z’
—— af 25. Production A farmer can produce f(z,y) = 200 62 + y°
17. Let f(w,y,z) = wze”. Find oz’ Oy’ ans 9z units of produce by utilizing z units of labor and y units
. af 0 5 of capital. (The capital is used to rent or purchase land,
18. Let f(z,y,2) = %y Find ?9%’ 55 and 52‘ materials, and equipment.)
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26

27.

28.

29

30.

31.

32.

Functions of Several Variables

(a) Calculate the marginal productivities of labor and
capital when z = 10 and y = 5.

Let h be a small number. Use the result of part (a)
to determine the approximate effect on production of
changing labor from 10 to 10 + A units while keeping
capital fixed at 5 units.

(b)

Use part (b) to estimate the change in production
when labor decreases from 10 to 9.5 units and capi-
tal stays fixed at 5 units.

(c)

Productivity Labor and Capital The productivity of a coun-

try is given by f(z,y) = 3002”*y'*, where z and y are

the amount of labor and capital.

(a) Compute the marginal productivities of labor and
capital when z = 125 and y = 64.

(b) Use part (a) to determine the approximate effect on
productivity of increasing capital from 64 to 66 units,

while keeping labor fixed at 125 units.
What would be the approximate effect of decreas-

ing labor from 125 to 124 units while keeping capital
fixed at 64 units?

(c)

Modes of Transportation In a certain suburban community,
commuters have the choice of getting into the city by bus
or train. The demand for these modes of transportation
varies with their cost. Let f(p1,p2) be the number of peo-
ple who will take the bus when p1 is the price of the bus
ride and p, is the price of the train ride. For example, if
f(4.50,6) = 7000, then 7000 commuters will take the bus
when the price of a bus ticket is $4.50 and the price of a

train ticket is $6.00. Explain why —?i < 0 and o7
8p1 6

> 0.
P2
Refer to Exercise 27. Let 9(p1,p2) be the number of peo-
ple who will take the train when p1 is the price of the
bus ride and p, is the price of the train ride. Would you

2,

expect =2 to be positive or negative? How about
o/ D2

Let p; be the average price of MP3 players, p, the av-

erage price of audio files, f(p1.p2) the demand for MP3

players, and g(p, ,pga) the demand for audio files. Explain
g

B, < 0 and Bpn < 0

The demand for a certain gas-guzzling car is given by

f(p1,p2), where p; is the price of the car and p, is the

why

0
price of gasoline. Explain why ——L < 0 and ﬂ < 0.
o Opa
The volume (V) of a certain amount of a gas is deter-
mined by the temperature (7) and the pressure (P) by

the formula V' = .08(7/P). Calculate and interpret B_Z

and Z—; when P =

Beer Consumption Using data collected from 1929 to 1941,
Richard Stone determined that the yearly quantity @ of
beer consumed in the United Kingdom was approximately
given by the formula Q = f(m,p,r,s), where

20, T == 300.

f(TTL,p, T, 3) — (1.058)m4136p~—.7277,.!)l48,?51(5

and m is the aggregate resl income (personal income af-
ter direct taxes, adjusted for retail price changes), p is the

33.

34.

35.

36.

37.

38

average retail price of the commodity (in this case, beer),
r is the average retail price level of all other consumer
goods and services, and s is a measure of the strength of
the beer. Determine which partial derivatives are positive
and which are negative, and give interpretations. (For ex-

ample, since ﬁ > 0, people buy more beer when the
prices of other goods increase and the other factors re-
main constant.) (Source: Journal of the Royal Statistical
Society.)

Richard Stone (see Exercise 32) determined that the yearly
consumption of food in the United States was given by

f(m,p,r) = (2.186)m 090 p=-543 022

Determine which partial derivatives are positive and
which are negative, and give interpretations of these facts.

Distribution of Revenue For the production function

f(z,y) = 60z"'y"* considered in Example 8, think of
f(z,y) as the revenue when z units of labor and Y units
of capital are used. Under actual operating conditions—

say, ¢ = a and y = b——gi(a,b) is referred to as the wage
x
. J .
per unit of labor and %(a,b) is referred to as the wage
per unit of capital. Show that

af of
b)=a |=(a == .
fla,b) =a L% (a,b)] +0b [Oy (a,b)J
(This equation shows how the revenue is distributed be-
tween labor and capital.)

92
Compute (%{, where f(z,y) = 60z*4y4, a production
i 2
function (where z is units of labor). Explain why ?—f is

. losnd
always negative.

0’2
Compute 87/{’

function (where y is units of capital). Explain why

where f(z,y) = 60z¥'y"*  a production

9 f

52

is always negative.

Let f(z,y) = 32 + 2zy + 5y, as in Example 5. Show that
F(L+h,4) — £(1,4) = 14h + 342,

Thus, the error in approximating f(1 4 h,4) — f(1, 4) byn
14h is 3h*. (If h = .01, for instance, the error is only
.0003.)

Body Surface Area Physicians, particularly pediatricians,
sometimes need to know the body surface area of a
patient. For instance, they use surface area to adjust the
results of certain tests of kidney performance. Tables are
available that give the approximate body surface area A
in square meters of a person who weighs W kilograms and
is H centimeters tall. The following empirical formula is
also used:
A= 007TW 425 725

0A 0A
Evaluate FiiG and £ when W = 54 and H = 165, and

give a physical interpretation of your answers. You may
use the approximations (54)%5 ~ 5.4, (54)~97% & .10,
(165)7*° ~ 40.5, and (165)~270 ~ .25, (Source: Mathe-
matical Preparation for Laboratory Technicians.)



Functions of Several Variables

Solutions to Check Your Understanding 2

1. (a) Negative. —g—g (400, 2000) is approximately the change

spending more money on advertising brings in more
customers, we would expect sales to increase; that is,

in sales due to a $1 increase in x (price). Since raising of

prices lowers sales, we would expect g (400, 2000) to

be negative.

B—y(400’ 2000) is most likely positive.

. If the interest rate is raised from 3.5% to 4.5%, the
monthly payment will increase by about $38.67. [An

Oz 9

e 4l ; .
(b) Positive. 55(400, 2000) is approximately the change increase to 4% causes an increase in the monthly pay-

in sales due to a $1 increase in advertising. Since ment of about 1 - (38.47) or $19.24, and so on.]

3 Maxima and Minima of
Functions of Several Variables

T

Figure 2 Horizontal tangent
lines at a relative minimum.

Previously, we studied how to determine the maxima and minima of functions of a
single variable. Let us extend that discussion to functions of several variables.

If f(x,y) is a function of two variables, we say that f(z,y) has a relative mazimum
when z = a, y = b if f(z,y) is at most equal to f(a,b) whenever x is near a and y is
near b. Geometrically, the graph of f(z,y) has a peak at (z,y) = (a,b). [See Fig. 1(a).]
Similarly, we say that f(z,y) has a relative minimum when z =a, y = b, if f(z,y) is
at least equal to f(a,b) whenever z is near a and y is near b. Geometrically, the graph
of f(x,y) has a pit whose bottom occurs at (z,y) = (a,b). [See Fig. 1(b).]

z

(a) (b)

Figure 1 Maximum and minimum points.

Suppose that the function f(z,y) has a relative minimum at (z,y) = (a,b), as in
Fig. 2. When y is held constant at b, f(z,y) is a function of z with a relative minimum
at = = a. Therefore, the tangent line to the curve z = f(x,b) is horizontal at = = a
and hence has slope 0. That is,

of B
5‘:1—:((1,,1)) =00,

Likewise, when z is held constant at a, then f(z,y) is a function of y with a relative
minimum at y = b. Therefore, its derivative with respect to y is zero at y = b.
That is,

af B
aj‘(a,b) = 0.

Similar considerations apply when f(z, y) has a relative maximum at (z,y) = (a, b).

15
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EXAMPLE 1

SOLUTION

Functions of Several Variables

First-Derivative Test for Functions of Two Variables If f(z,y) has either a relative
maximum or minimum at (z,y) = (a,b), then

of o

A (a:b) =0
and

of N

5&((1, b) = ()

A relative maximum or minimum may or may not be an absolute maximum or
minimum. However, to simplify matters in this text, the examples and exercises have
been chosen so that, if an absolute extremum of f(z,y) exists, it will occur at a point
where f(z,y) has a relative extremum.

Locating a Minimum Value The function f(z,y) = 3z% — 4oy + 3y? + 8z — 17y + 30
has the graph pictured in Fig. 2. Find the point (a,b) at which f(z,y) attains its
minimum value.

We look for those values of = and y at which both partial derivatives are zero. The
partial derivatives are

g:ﬁx—4y+8,

ox
a—§:—4m+6y—17.
Settinggzoand%]jc:& we obtain
6r —4y+8=0 or y:6$:8,
i s By — 17 =50 o y=4$217.

By equating these two expressions for y, we have

6 +8 dx+17
4 6
Cross-multiplying, we see that
36z + 48 = 16z + 68
20z = 20

r=i,

When we substitute this value for z in our first equation for y in terms of z, we obtain

_6r+8 6148 7
4 T4 Ty

0 0
If f(z,y) has a minimum, it must occur where 5% = 0 and W 0.
We have determined that the partial derivatives are zero only when z = 1,
y = % From Fig. 2 we know that f(z,y) has a minimum, so it must be at

(z,y) = (1,1). » Now Try Exercise 3



EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION

Functions of Several Variables

Price Discrimination A firm markets a product in two countries and can charge dif-
ferent amounts in each country. Let 2 be the number of units to be sold in the first
country and y the number of units to be sold in the second country. Due to the laws
of demand, the firm must set the price at 97 — (2/10) dollars in the first country and
83 — (20) dollars in the second country to sell all the units. The cost of produc-
ing these units is 20,000 + 3(z + y). Find the values of z and y that maximize the
profit.

Let f(z,y) be the profit derived from selling = units in the first country and y in the
second. Then,

f(z,y) = [revenue from first country] + [revenue from second country| — [cost]

_ (97 N i%) o+ (83 - 2?/_0) y — [20,000 + 3(z + y)]

e y?
=97z — Tﬁ+83y_ —2—0——20,000-—3:5—331

2 y?
= e — =- — 20,000.
94x 10+80y 20 ,000

To find where f(z,y) has its maximum value, we look for those values of z and y at
which both partial derivatives are zero. ,

of T
e
af; Yy
oy~ 10
We set g =0 and ?_Ji = ( to obtain
ox Ay

94—%:0 or =470,
80— L =0 or y=800.
10

Therefore, the firm should adjust its prices to levels where it will sell 470 units in the
first country and 800 units in the second country. » Now Try Exercise 9

Heat Loss Suppose that we want to design a rectangular building having a volume of
147,840 cubic feet. Assuming that the daily loss of heat is given by

w = 1lzy + 14yz + 15z2,
where z, y, and z are, respectively, the length, width, and height of the building, find
the dimensions of the building for which the daily heat loss is minimal.
We must minimize the function
w = 1lzy + 14yz + 1522, (1)

where z, y, z satisfy the constraint equation

zyz = 147,840.

17
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Functions of Several Variables

For simplicity, let us denote 147,840 by V. Then, zyz = V, so z = V/zy. We substitute
this expression for z in the objective function (1) to obtain a heat-loss function g(z,y)
of two variables:

7 7

V ¥ 14V 15V
- — 4+ 15r— =11 —_— .
g(z,y) = llzy + 14ymy + xmy Ty + . +

Y

To minimize this function, we first compute the partial derivatives with respect to
x and y; then we equate them to zero.

dg 14V

—=1ly— — =

ox Ve g

dg 15V

Zoq1p— 2L o

- TP

These two equations yield
14V
1lzy® = 15V. (3)

If we substitute the value of y from (2) in (3), we see that

2
llx ( 14V> = 16V

11x2
1422
1w =Y
S 4V 142y

11-15-V ~ 11-15

_14%.147,840

11-15

= 175,616.
Therefore, we see (using a calculator) that

T = 56.
From equation (2) we find that

_ 14V 14.147,840

ST T Tiisee - o
Finally,
_ V147,840 —_—
Ty 56 - 60

Thus, the building should be 56 feet long, 60 feet wide, and 44 feet high to minimize
the heat loss. For further discussion of this heat-loss problem, as well as other examples
of optimization in architectural design, see Urban Space and Structure.

P Now Try Exercise 27

When considering a function of two variables, we find points (z,y) at which f(z,y)

: : . e .0 0
has a potential relative maximum or minimum by setting 5[ and —a—[ equal to zero and
7 Y

solving for = and y. However, if we are given no additional information about flz,y),
it may be difficult to determine whether we have found a maximum or a minimum (or
neither). In the case of functions of one variable, we studied concavity and deduced the
second-derivative test. There is an analog of the second-derivative test for functions
of two variables, but it is much more complicated than the one-variable test. We state
it without proof.



EXAMPLE 4

SOLUTION

Functions of Several Variables

Second-Derivative Test for Functions of Two Variables

Suppose that f(z,y) is a func-

tion and (a,b) is a point at which

and let

9 0,8y =0,

af ol
——(a,b) =0 By

5 and

?f \*
8z6y> 2

o'f
Ox?

B2f 8°f
D("E,y)zgﬁ'ayz (

D(a,b) >0 and (a,b) >0,

then f(z,y) has a relative minimum at (a,b).

2. If

2

2 ey,

D(a,b) >0 and 522

then f(z,y) has a relative maximum at (a, b).

3. If

D(a,b) <0,

then f(z,y) has neither a relative maximum nor a relative minimum at (a, b).

4. If D(a,b) = 0, no conclusion can be drawn from this test.

The saddle-shaped graph in Fig. 3 illustrates a function f(z,y) for which
D(a,b) < 0. Both partial derivatives are zero at (z,y) = (a,b), and yet the func-
tion has neither a relative maximum nor a relative minimum there. (Observe that the
function has a relative maximum with respect to  when y is held constant and a
relative minimum with respect to y when z is held constant.)

T

Figure 3

Applying the Second Derivative Test Let f(z,y) = ® —y* — 12z + 6y + 5. Find all
possible relative maximum and minimum points of f(z,y). Use the second-derivative
test to determine the nature of each such point.

Since

% = 3z° — 12, ‘2—5 = —2y + 6,
we find that f(z,y) has a potential relative extreme point when
8z° - 12 =0,
—2y+6=0.

From the first equation, 322 = 12, 2* = 4, and = +2. From the second equation,

of
y = 3. Thus, 9z and

of

dy

are both zero when (z,y) = (2,3) and when (z,y) = (-2,3).

19



Functions of Several Variables

To apply the second-derivative test, compute

o f o’ f % f
—5 =6 3 B —'Qa = Oa
o =" Oy 9z 0y
and ,
>*fPf f \ 2
: 22 ) = (6z)(~2) — 02 = —12z. 4
D) =5k 5 - () =€) : (@)
Since D(2,3) = —12(2) = —24, which is negative, case 3 of the second-derivative test

says that f(z,y) has neither a relative maximum nor a relative minimum at (2,3).

However, D(-2,3) =

~1(

—2) = 24. Since D(-2,3) is positive, the function f(z,y)

has either a relative maximum or a relative minimum at (-2, 3). To determine which,

we compute

>f
82

—(=2,3) = 6(-2) = —12 < 0.

By case 2 of the second-derivative test, the function f(z,y) has a relative maximum

at (—2,3).

» Now Try Exercise 19

In this section we have restricted ourselves to functions of two variables, but the
case of three or more variables is handled in a similar fashion. For instance, here is
the first-derivative test for a function of three variables.

If f(z,y,2) has a relative maximum or minimum at (z, v, 2=

Check Your Understanding 3

(a,b,c), then

of i
%(a,b,c) —O,
of i
a—y(a,b,c) —O,
of "
—(,-9—z-(a,b,c) =0.

1. Find all points (z,y) where f(2,y) = 2* — 3zy + §y> + 8
has a possible relative maximum or minimum.

EXERCISES 3

2. Apply the second-derivative test to the function g(z,y) of
Example 3 to confirm that a relative minimum actually
occurs when = 56 and y = 60.

Find all points (z,y) where f(z,u) has a possible relative maximum

. flz,y) =2* —8xy +2y° -3
. The function f(z,y) = 2c 4+ 3y +9 —2* —zy — > has a
maximum at some point (z,y). Find the values of z and
y where this maximum occurs.
10. The function f(z,y) = %322 + 2zy + 3y? — 2z + 2y has a
minimum at some point (z,y). Find the values of z and
y where this minimum occurs.

or minimum.

1. f(z,y) =a* —3y* +4x + 6y + 8

2. f(z,y) = —:c +y? -3z -2y —5

3. f(z,y) =2 —bzy + 6y + 3z — 2y + 4
4. f(z,y) = =32® + Toy —4y* +z +y
5. f(z,y) = z® + y* — 3z + 6y

6. f(z,y) =2 —y> +bx + 12y + 1

7. fleyy) = 3a® -2y — bz + 6y -5

8

9

In Exercises 11-16, both first partial derivatives of the function
f(z,y) are zero at the given points. Use the second-derivative test to
determine the nature of f(x,y) at each of these points. If the
second-derivative test is inconclusive, so state.

11. f(z,y) = 3z? — 6zy + y° — 9; (3,3), (—1,—1)

12. f(=z,y) = 6zy® — 22° — 3y*; (0,0), (1,1), (1,-1)
13. f(z,y) = 22* —z* —y?%; (-1,0), (0,0), (1,0)
14. f(z,y) = «* — dzy + y*; (0,0), (1,1), (-1, 1)
16, f(z; )—ye =3z —y+5; (0,3)

)=

1
16. flzy —+J+vy,(1 1)

Find all points (z,y) where f(z,y) has a possible relative maximum
or minimum. Then, use the second-derivative test to determine, if
possible, the nature of f(z,y) at each of these points. If the
second-derivative test is inconclusive, so state.

17. f(z,y) = z° — 22y + 442

18. f(z,y) = 2z* + 3zy + 5y°



Functions of Several Variables

19. f(z,y) = —2z° + 2zy —y* + 4z — 6y +5
20. f(z,y) = —a* — 8zy — y?

21. f(z,y) = «* + 2zy +5y° + 20 + 10y — 3
22. f(z,y) = % — 2zy + 3y* + 4o — 16y + 22
23, f(z,y) =2 —y* -3z +4y

24. f(x,y) = 2 — 2zy + 4y

25. f(z,y) =22+ —2 - 12y +7

26. f(z,y) =« + 4oy + 2y*
27. Find the possible values of , y, z at which
flz,y,2) =22 + 3y +2° —2c —y—2
assumes its minimum value.
28. Find the possible values of z, y, z at which
f(z,y,2) =5+8c—dy+a’+y2 +2°
assumes its minimum value.

29. Maximizing Volume U.S. postal rules require that the
length plus the girth of a package cannot exceed 84 inches.
Find the dimensions of the rectangular package of great-
est volume that can be mailed. [Note: From Fig. 4 we see
that 84 = (length) + (girth) = + (2z + 2y).]

ot = //’
LA //

Figure 4

Solutions to Check Your Understanding 3

30. Minimizing Surface Area Find the dimensions of the rect-

31.

32.

33.

34.

angular box of least surface area that has a volume of
1000 cubic inches.

Maximizing Profit A company manufactures and sells two
products, I and 11, that sell for $10 and $9 per unit, re-
spectively. The cost of producing  units of product I and
y units of product II is

400 + 2z + 3y + .01(32? + xy + 3y*).

Find the values of z and y that maximize the company’s
profits. [Note: Profit = (revenue) — (cost).]

Maximizing Profit A monopolist manufactures and sells
two competing products, I and II, that cost $30 and $20
per unit, respectively, to produce. The revenue from mar-
keting @ units of product I and y units of product II is
98z + 112y — .0day — .12% — .2y>. Find the values of & and
y that maximize the monopolist’s profits.

Profit from Two Products A company manufactures and sells
two products, I and 11, that sell for $p; and $pi per unit,
respectively. Let C(z,y) be the cost of producing @ units
of product I and y units of product II. Show that if the
company’s profit is maximized when z = a, y = b, then
%’i—(av b) =P1 and aa_‘fjj'(av b) ='P1

Revenue from Two Products A company manufactures and
sells two competing products, I and II, that cost $p; and
$pi; per unit, respectively, to produce. Let R(z,y) be the
revenue from marketing @ units of product I and y units
of product II. Show that if the company’s profit is maxi-
mized when = = a, y = b, then

OR

E;(av b) =Dp

OR
and %(a,b) = pi1.

1. Compute the first partial derivatives of f(z,y) and solve
the system of equations that results from setting the par-
tials equal to zero.

Of _ o 2 _
ax—Sx 3y=0
Of _ g0 ty=
By 3z+y=0

Solve each equation for y in terms of .

y=a’
y=3z

Equate expressions for y and solve for z.

z? =3z
z2 -3z =0
z(x—3)=0

z=0 or z=3

Whenz =0,y = 0% = 0. When z = 3, y = 32 = 9. There-
fore, the possible relative maximum or minimum points
are (0,0) and (3,9).

o

We have
14V 15V
g(z,y) = oy + — + —,
€ Yy
6_g = - ! and 3—9 11 i
ox 2 Ay 2
Now,
9g 28 0*g 30V 0%g
5‘1“2— = ——CL“s s a—y7 3 and 6ac(’9y 11.
Therefore,
28V 30V 9
D(z,y) = FE (11)%
v 4
D(56,60) = 28(147,840) 30(147840) |,

(56)° (60)°

— 484 — 121 = 363 > 0,

i g 28(147,840)
o 29 (56,60) = —Gor

It follows that g(z,y) has a relative minimum at = = 56,
y = 60.

> 0.
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4 Lagrange Multipliers and
Constrained Optimization

Unconstrained

/ maximum

Constrained
maximum

Y

e+ Ty—25=0
Figure 1 A constrained
optimization problem.

We have seen a number of optimization problems in which we were required to
minimize (or maximize) an objective function where the variables were subject to
a constraint equation. For instance, in one problem, we minimized the cost of a
rectangular enclosure by minimizing the objective function 42z + 28y, where z and
y were subject to the constraint equation 600 — zy = 0. In the preceding sec-
tion (Example 3), we minimized the daily heat loss from a building by minimiz-
ing the objective function 11zy + 14yz + 15z2, subject to the constraint equation
147,840 — zyz = 0.

Figure 1 gives a graphical illustration of what happens when an objective function
is maximized subject to a constraint. The graph of the objective function is the cone-
shaped surface z = 36 — 22 — 32, and the colored curve on that surface consists of those
points whose z- and y-coordinates satisfy the constraint equation x + Ty — 25 = 0.
The constrained maximum is at the highest point on this curve. Of course, the surface
itself has a higher “unconstrained maximum” at (z,y, z) = (0,0, 36), but these values
of x and y do not satisfy the constraint equation.

In this section, we introduce a powerful technique for solving problems of this
type. Let us begin with the following general problem, which involves two variables.

Problem Let f(z,y) and g(x,y) be functions of two variables. Find values of 2 and
y that maximize (or minimize) the objective function f (z,y) and that also satisfy the
constraint equation g(z,y) = 0.

Of course, if we can solve the equation g(z,y) = 0 for one variable in terms of
the other and substitute the resulting expression in f(z,y), we arrive at a function
of a single variable that can be maximized (or minimized) by using the methods you
may have previously learned. However, this technique can be unsatisfactory for two
reasons. First, it may be difficult to solve the equation g(z,y) = 0 for z or for y. For
example, if g(z,y) = a* + 5zdy + 72?y® + 5 — 17 = 0, it is difficult to write Y as a
function of 2 or = as a function of y. Second, even if g(z,y) = 0 can be solved for
one variable in terms of the other, substitution of the result into f(z,y) may yield a
complicated function.

One clever idea for handling the preceding problem was discovered by the
eighteenth-century mathematician Lagrange, and the technique that he pioneered to-
day bears his name, the method of Lagrange multipliers. The basic idea of this method
is to replace f(z,y) by an auxiliary function of three variables F(z,y,)), defined as

F(:c,y,)\) = f(muy) + /\g(:v,y).

The new variable \ (lambda) is called a Lagrange multiplier and always multiplies the
constraint function g(z,y). The following theorem is stated without proof.

Theorem  Suppose that, subject to the constraint 9(z,y) = 0, the function f(z,y)
has a relative maximum or minimum at (z,y) = (a,b). Then, there is a value
of A—say, A = ¢—such that the partial derivatives of F(z,y,\) all equal zero at
('T9 Y, /\) = (a" b, C)-

The theorem implies that, if we locate all points (x,y,\) where the partial deriva-
tives of F(x,y,)) are all zero, among the corresponding points (z,y), we then will
find all possible places where f(x,y) may have a constrained relative maximum or
minimum. Thus, the first step in the method of Lagrange multipliers is to set the

I



EXAMPLE 1

SOLUTION

Functions of Several Variables

partial derivatives of F(z,y,)) equal to zero and solve for z, y, and A:
oF
===
oz

(L-3)

F
From the definition of F(z,y, ), we see that %/\— = g(z,y). Thus, the third equation

(L-3) is just the original constraint equation g(z,y) = 0. So, when we find a point
(z,y, \) that satisfies (L-1), (L-2), and (L-3), the coordinates x and y will automatically

satisfy the constraint equation.

The first example applies this method to the problem described in Fig. 1.

Lagrange Multipliers Maximize 36 — z% — 1?2 subject to the constraint z + 7y —25 = 0.

Here, f(z,y) = 36 — 2% — 42, g(z,y) = v + Ty — 25, and

F(zx,y,\) = 36 — 22 —y? + Xz + Ty — 25).
Equations (L-1) to (L-3) read

oF
— =-2x4+ =0,
ox i
oF
— =2y +TA =0,
dy
%%;\1— =xz+7y—25=0.
We solve the first two equations for A:
N= 28
2
A==y
71/
If we equate these two expressions for A, we obtain
2
. 1
fooee 7y'

Substituting this expression for z in equation (3), we have

1
U+ Ty —25=0

50
o,
7Y=2%
7
y=13

With this value for y, equations (4) and (5) produce the values of z and A:

ao (7Y 1
v=7\2)" 2
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EXAMPLE 2

SOLUTION

Functions of Several Variables

Therefore, the partial derivatives of F(x,y, \) are zero when z = %, Y= %, and A = 1.

So, the maximum value of 36 — 2% — y? subject to the constraint z + 7y — 25 = 0 is

o (- -2
2 2) 27 » Now Try Exercise 1

The preceding technique for solving three equations in the three variables 5 U
and A can usually be applied to solve Lagrange multiplier problems. Here is the basic
procedure:

1. Solve (L-1) and (L-2) for A in terms of z and y; then, equate the resulting expres-
sions for A.

2. Solve the resulting equation for one of the variables.

3. Substitute the expression so derived in the equation (L-3), and solve the resulting
equation of one variable.

4. Use the one known variable and the equations of steps 1 and 2 to determine the
other two variables.

In most applications, we know that an absolute (constrained) maximum or min-
imum exists. In the event that the method of Lagrange multipliers produces exactly
one possible relative extreme value, we will assume that it is indeed the sought-after
absolute extreme value. For instance, the statement of Example 1 is meant to imply
that there is an absolute maximum value. Since we determined that there was just one
possible relative extreme value, we concluded that it was the absolute maximum value.

Lagrange Multipliers  Using Lagrange multipliers, minimize 42z + 28y, subject to the
constraint 600 — xy = 0, where z and y are restricted to positive values.

We have f(z,y) = 42z + 28y, g(z,y) = 600 — zy, and
F(z,y,\) = 42z + 28y + A(600 — zy).

The equations (L-1) to (L-3), in this case, are

oF
— =42 - \y =
o y=0,
oF
— =28— Az =0,
Ay *
F
g—)\ =600 — zy = 0.
From the first two equations, we see that
42 28
A= — = —, S
7 . (step 1)
Therefore,
42z = 28y
and
2
T =3y (step 2)

Substituting this expression for z in the third equation, we derive

2
600—(zy)y=0
(5)s

s

y? =§-600:900

y = £30. (step 3)



EXAMPLE 3

SOLUTION

Functions of Several Variables

We discard the case y = —30 because we are interested only in positive values of x
and y. Using y = 30, we find that
T = 2(30) =20
S (step 4)
BT
T2 5

So the minimum value of 42z + 28y with = and y subject to the constraint occurs
when z = 20, y = 30, and A = % That minimum value is

42-(20) + 28 (30) = 1680. » Now Try Exercise 3

Maximizing Production  Suppose that x units of labor and y units of capital can

produce f(z,y) = 60z%*y"/* units of a certain product. Also, suppose that each unit
of labor costs $100, whereas each unit of capital costs $200. Assume that $30,000 is
available to spend on production. How many units of labor and how many units of
capital should be utilized to maximize production?

The cost of z units of labor and y units of capital equals 100z + 200y. Therefore,
since we want to use all the available money ($30,000), we must satisfy the constraint
equation

100z + 200y = 30,000

or
g(zx,y) = 30,000 — 100z — 200y = 0.

The objective function is f(z,y) = 602%4yY/*. In this case, we have
F(z,y,\) = 60z¥y"* + X(30,000 — 100z — 200y).
The equations (L-1) to (L-3) read

oF

=4 -1/4 1/4 — >\ — I
i 5y 00 0, (L-1)
e 3/4, —3/4 -
B 152y 200\ = 0, (L-2)
%— IA = 30,000 — 100z — 200y = 0. (L-3)

By solving the first two equations for A\, we see that

45 a9 i
A=me? ¥ Tt ¥

15 sy a3 apm —sp
/\_QOOI voEgptY o
Therefore, we must have

9 o1 _ 3 au s
20° YV Tt Y o
To solve for y in terms of z, let us multiply both sides of this equation by x4yt

9 ——3—1'
207 40

or

25
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EXAMPLE 4

Functions of Several Variables

Inserting this result in (L-3), we find that

1
100z + 200 (630) = 30,000

% = 30,000
3
= 295,
Hence, =
y=— =375
=

So maximum production is achieved by the use of 225 units of labor and 37.5 units of
capital. » Now Try Exercise 15

In Example 3, it turns out that, at the optimum values of z and y,

_ 9 s 9 =1 e B o
A= gpa iyt = 55 (225) V4(37.5) " ~ 2875,
%[ = 45z~ = 45(205) 14 (37.5)14, (6)
T
g—; = 16c¥4y~¥ = 15(225)%4 (37.5)~9", (7)

It can be shown that the Lagrange multiplier \ can be interpreted as the marginal
productivity of money. That is, if 1 additional dollar is available, approximately .2875
additional units of the product can be produced.

. ... 0 9] )
Recall that the partial derivatives ?9% and b—f are called the marginal productivity
Y

of labor and capital, respectively. From equations (6) and (7) we have
[marginal productivity of labor] _ 45(225)714(37.5)1/4
[marginal productivity of capital] 15(225)%/4(37.5)~3/4

45
= —(225)71(37.5)!
15( 25)7°(37.5)

On the other hand,
[cost per unit of labor] 100 1

[cost per unit of capital] — 200 2

This result illustrates the following law of economics. If labor and capital are at their
optimal levels, the ratio of their marginal productivities equals the ratio of their unit
costs.

The method of Lagrange multipliers generalizes to functions of any number of
variables. For instance, we can maximize f(z,y, z), subject to the constraint equation
9(x,y,z) = 0, by considering the Lagrange function

F(z,y,2,A) = f(z,y,2) + \g(z,y, 2).
The analogs of equations (L-1) to (L-3) are
F F F F
a_":Oa g—:O, a_:()’ a_:()
Ox oy 0z O\

Let us now show how we can solve the heat-loss problem of Section 3 by using

this method.

Lagrange Multipliers in Three Variables Use Lagrange multipliers to find the values of
z, y, z that minimize the objective function

f(z,y,2) = 1lzy + 14yz + 1522,



Functions of Several Variables

subject to the constraint
ryz = 147,840.

SOLUTION  The Lagrange function is
F(z,y, 2 \) = 1lzy + 14yz + 1522 + A(147,840 — TYZ).

The conditions for a relative minimum are

oF

e 157 = =

5 11y + 152 — Ayz =0,

8,—F~ =1lz + 14z — Azz =0,

dy

B_F_ = 14y + 15z — Azy = 0,

0z

oF

o 147,840 — zyz = 0. (8)

From the first three equations, we have

W My+ilsz 1115 )
T yz oz Y
/\:11m+14z=-11 1_4 L )
xrz V4 X
L ly+ise 1415
Yy z Yy )

Let us equate the first two expressions for A:
11 15 11 14
St + —_— T —

z Y % x
B _u
Yy x
14
T = 7=V

Next, we equate the second and third expressions for A in (9):
1 14 14 15

==+ —
z o x Yy
1115
z oy
. 3
=Y
We now substitute the expressions for z and z in the constraint equation (8) and
obtain
14 11
ey —y=1
15y Y 15y 47,840
s (147,840)(15)
= = 216,000
YT
y = 60.

From this, we find that
14 11
= -1—5(60) =56 and z= —1—5(60) = 44,

We conclude that the heat loss is minimized when z = 56, y = 60, and z = 44.
» Now Try Exercise 17
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In the solution of Example 4, we found that, at the optimal values of x, y, and z,

14 15 11

Ty z
Referring to Example 2 of Section 1, we see that 14 is the combined heat logs through
the east and west sides of the building, 15 is the heat loss through the north and south

sides of the building, and 11 is the heat loss through the floor and roof. Thus, we have
that, under optimal conditions,

[heat loss through east and west sides] _ [heat loss through north and south sides]

[distance between east and west sides]  [distance between north and south sides]
_ [heat loss through floor and roof]
~ [distance between floor and roof] '

This is a principle of optimal design: Minimal heat loss occurs when the distance
between each pair of opposite sides is some fixed constant times the heat loss from the
pair of sides.
The value of A in Example 4 corresponding to the optimal values of z, v, and 7 is
Ao 15 11151
Sy Ty Tute "y
We can show that the Lagrange multiplier \ is the marginal heat loss with respect
to volume. That is, if a building of volume slightly more than 147,840 cubic feet is
optimally designed, % unit of additional heat will be lost for each additional cubic foot
of volume.

Check Your Understanding 4

1. Let F(z,y,A) = 22 + 3y + A(90 — 6323}, Find Z_F_ 2. Refer to Exercise 29 of Section 3. What is the function

EXERCISES 4

z F(z,y,l,\) when the exercise is solved by means of the
method of Lagrange multipliers?

Solve the following exercises by the method of Lagrange multipliers. 8. Maximizing Area Four hundred eighty dollars are avail-

1. Minimize z? + 3y? + 10, subject to the constraint able to fence in a rectangular garden. The fencing for

8—z—y=0. the north and south sides of the garden costs $10 per

o, 5 5 . _ o foot and the fencing for the east and west sides costs

2. Maximize @* —y?, subject. to the constraint $15 per foot. Find the dimensions of the largest possible

22+y-3=0. garden.

8. Maximize 2* + zy — 3y®, subject to the constraint 9. Maximizing Volume Three hundred square inches of mate-

2-z-2 =0 rial are available to construct an open rectangular box

4. Minimize %:c? —3zy +y* + ;—, subject to the constraint with a square base. Find the dimensions of the box that
3r—y—1=0. maximize the volume.

5. Find the values of z, y that maximize 10. Minimizing Space in a Firm The amount of space required

. Find the values of z, y that minimize

—2z% — 2wy — 392 + o+ 2,

subject to the constraint a: +y — 2 = 0.

z* + a2y + 9y — 2z — 5y,

by a particular firm is f(z,y) = 1000,/622 + y?, where x
and y are, respectively, the number of units of labor and
capital utilized. Suppose that labor costs $480 per unit
and capital costs $40 per unit and that the firm has $5000
to spend. Determine the amounts of labor and capital
that should be utilized in order to minimize the amount

subject to the constraint 1 —z + y = 0. of space required.
» Maximizing a Product Find the two positive numbers  11. Inscribed Rectangle with Maximum Area Find the dimen-
whose product is 25 and whose sum is as small as sions of the rectangle of maximum area that can be in-

possible.

scribed in the unit circle. [See Fig. 2(a).]
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13.
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<

1l

8
o

(b)
Figure 2

Distance from a Point to a Parabola Find the point on the
parabola y = a° that has minimal distance from
the point (16,%). [See Fig. 2(b).] [Suggestion: If d
denotes the distance from (z,y) to (16,3), then
d? = (z — 16)? + (y — %)?. If d* is minimized, then d will
be minimized.]

Production Schedule and Production Possibilities Curve  Sup-
pose that a firm makes two products, A and B, that use
the same raw materials. Given a fixed amount of raw
materials and a fixed amount of labor, the firm must de-
cide how much of its resources should be allocated to the
production of A and how much to B. If z units of A and y
units of B are produced, suppose that = and y must satisfy

922 + 4y* = 18,000.

The graph of this equation (for z > 0, y > 0) is called a
production possibilities curve (Fig. 3). A point (z,y) on
this curve represents a production schedule for the firm,
committing it to produce z units of A and y units of B.
The reason for the relationship between z and y involves
the limitations on personnel and raw materials available
to the firm. Suppose that each unit of A yields a $3 profit,
whereas each unit of B yields a $4 profit. Then, the profit
of the firm is

P(z,y) = 3z + 4y.

Find the production schedule that maximizes the profit
function P(z,y).

Y

922 + 432 = 18,000

Figure 3 A production
possibilities curve.

14. Maximizing Profit A firm makes @ units of product A and y

15

.

16.

17

18.

19.

20.

21.

units of product B and has a production possibilities curve
given by the equation 4z? + 25y = 50,000 for = > 0,
y > 0. (See Exercise 13.) Suppose profits are $2 per unit
for product A and $10 per unit for product B. Find the
production schedule that maximizes the total profit.

Optimal Amount of Labor The production function for a

firm is f(x,y) = 642%*y"*, where & and y are the number

of units of labor and capital utilized. Suppose that labor
costs $96 per unit and capital costs $162 per unit and that
the firm decides to produce 3456 units of goods.

(a) Determine the amounts of labor and capital that
should be utilized in order to minimize the cost. That
is, find the values of , y that minimize 96z + 162y,
subject to the constraint 3456 — 64z%1y"/* = 0.

(b) Find the value of X at the optimal level of production.

(c) Show that, at the optimal level of production, we
have

[marginal productivity of labor]
[marginal productivity of capital]

_ [unit price of labor]
" [unit price of capital]”

Maximizing Profit Consider the firm of Example 2, Section
3, who sells its goods in two countries. Suppose that the
firm must set the same price in each country. That is,
97 — (z/10) = 83 — (y/20). Find the values of z and y that
maximize profits under this new restriction.

Maximizing a Product Find the values of z, ¥, and
» that wmaximize xyz subject to the constraint
36 —x — 6y — 3z =0.

Find the values of z, y, and z that wmaximize
zy + 3zz + 3yz subject to the constraint 9 — xyz = 0.

Find the values of z, y, z that maximize
3z + 5y + 2z —a° —y* - 27,
subject to the constraint 6 —z —y —z = 0.
Find the values of z, y, z that minimize
22 +yt + 22 =3z -5y — 2,
subject to the constraint 20 — 2z —y — 2z = 0.
Minimizing Cost The material for a closed rectangular box
costs $2 per square foot for the top and $1 per square foot
for the sides and bottom. Using Lagrange multipliers, find
the dimensions for which the volume of the box is 12 cubic

feet and the cost of the materials is minimized. [Refer to
Fig. 4(a); the cost will be 3zy + 2z + 2yz.|

Figure 4
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22.

23.

24

25.

Functions of Several Variables

Use Lagrange multipliers to find the three positive num-
bers whose sum is 15 and whose product is as large as
possible.

Minimizing Surface Area TMind the dimensions of an open
rectangular glass tank of volume 32 cubic feet for which
the amount of material needed to construct the tank is
minimized. [See Fig. 4(a).]

Maximizing Volume A shelter for use at the beach has a
back, two sides, and a top made of canvas. [See Fig. 4(b).]
Find the dimensions that maximize the volume and re-
quire 96 square feet of canvas.

Production Function Let f(x,y) be any production function
where z represents labor (costing $a per unit) and y rep-
resents capital (costing Sb per unit). Assuming that $c is

Solutions to Check Your Understanding 4

26

available, show that, at the values of x, y that maximize
production,
of

oz

ar

ay
Note: Let F(z,y,A) = f(x,y) + Mc—az —by). The
result follows from (L-1) and (L-2).

Production Function By applying the result in Exercise 25
to the production function f(z,y) = kz®y”, show that,
for the values of z, y that maximize production, we have

a
T

y af

¢ ba’
(This tells us that the ratio of capital to labor does not
depend on the amount of money available, nor on the level

of production, but only on the numbers a, b, a, and 3.)

1

The function can be written as
F(z,y,A) =22+ 3y + X-90 — X\ - 6233,
When differentiating with respect to «, treat both y and
A as constants (so A-90 and A6 are also regarded as
constants).
or

1 . ’
—— =2 \-6. =Y. 3
Ow 3" 4

=2 -2z~

(Note: It is not necessary to write out the multiplication
by A as we did. Most people just do this mentally and
then differentiate.)

. The quantity to be maximized is the volume xzyl. The

constraint is that length plus girth is 84. This translates
to 84 =10+2zx+2yor 84 — | — 2z — 2y = 0. Therefore,

F(z,y,[,X) = ayl + \(84 — | — 2z — 2y).

9 The Method of Least Squares

Today, people can compile graphs of literally thousands of different quantities: the
purchasing value of the dollar as a function of time, the pressure of a fixed volume of
air as a function of temperature, the average income of people as a function of their
years of formal education, or the incidence of strokes as a function of blood pressure.
The observed points on such graphs tend to be irregularly distributed due to the
complicated nature of the phenomena underlying them, as well as to errors made in
observation. (For example, a given procedure for measuring average income may not
count certain groups.)

In spite of the imperfect nature of the data, we are often faced with the problem of
making assessments and predictions based on them. Roughly speaking, this problem
amounts to filtering the sources of errors in the data and isolating the basic underlying
trend. Frequently, on the basis of a suspicion or a working hypothesis, we may suspect
that the underlying trend is linear; that is, the data should lie on a straight line. But
which straight line? This is the problem that the method of least squares attempts to
answer. To be more specific, let us consider the following problem:

Problem of Fitting a Sfr’dighf Line to Data  Given observed data points (z1,y;),
(z2,92), ..., (xy,yy) on a graph, find the straight line that best fits these points.

To completely understand the statement of the problem being considered, we
must define what it means for a line to “best” fit a set of points. If (z;,9;) is one
of our observed points, we will measure how far it is from a given line y = Az + B
by the vertical distance from the point to the line. Since the point on the line with
z-coordinate x; is (z;, Az; + B), this vertical distance is the distance between the
y-coordinates Az; + B and y;. (See Fig. 1.) If E; = (Az; + B) — y;, either E; or —E,
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is the vertical distance from (z;, ;) to the line. To avoid this ambiguity, we work with
the square of this vertical distance:

E? = (Az; + B —y;)*.

The total error in approximating the data points (z1,91),...,(Zy,yy) by the line
y = Az + B is usually measured by the sum E of the squares of the vertical distances
from the points to the line,

E=E}+E}+..-+E}.

E is called the least-squares error of the observed points with respect to the line. It
all the observed points lie on the line y = Az + B, all E; are zero and the error E is
zero. If a given observed point is far away from the line, the corresponding E? is large
and hence makes a large contribution to the error E.

(x1, y1)

(@y, Azy + B)

Figure 1 Fitting a line to
data points.

(zq, Az + B)

In general, we cannot expect to find a line y = Az + B that fits the observed
points so well that the error E is zero. Actually, this situation will occur only if the
observed points lie on a straight line. However, we can rephrase our original problem
as follows:

Problem Given observed data points (x1,y1), (¥2,y2), ..., (Zy, ¥y ), find a straight
line y = Az + B for which the error E is as small as possible. This line is called the
least-squares line or regression line.

It turns out that this problem is a minimization problem in the two variables A
and B and can be solved with the methods of Section 3. Let us consider an example.

Least Squares Error  Find the straight line that minimizes the least-squares error for
the points (1,4), (2,5), (3,8).

Let the straight line be y = Az + B. When z = 1,2,3, the y-coordinate of the
corresponding point of the line is A+ B, 2A+ B, 3A+ B, respectively. Therefore, the
squares of the vertical distances from the points (1,4), (2,5), (3,8) are, respectively,

E} =(A+B-4)%,
E2 = (2A+ B -5)?,
E? = (3A+ B —8)%.
(See Fig. 2.) Thus, the least-squares error is
E=E'+E}+E:=(A+B—-4)*+(24A+B-5)+(34+B-8)".

This error obviously depends on the choice of A and B. Let f(A, B) denote this least-
squares error. We want to find values of A and B that minimize f (A, B). To do so, we

31
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take partial derivatives with respect to A and B and set the partial derivatives equal
to zero:

g_:J;_:2(A+B_4)+2(2A+B—5)-2+2(3A+B—8)-3

=284+12B-76=0,

%:2(A+B—4)+2(2A+B—5)+2(3A+B—8)

=12A+6B — 34 = 0.
To find A and B, we must solve the system of simultaneous linear equations
284+ 12B =176

12A+ 6B = 34.

Figure 2

Multiplying the second equation by 2 and subtracting from the first equation, we
have 44 = 8, or A = 2. Therefore, B = %, and the straight line that minimizes the
least-squares error is y = 2z + §. » Now Try Exercise 1

The minimization process used in Example 1 can be applied to a general set

of data points (z1,11),...,(zy,yy) to obtain the following algebraic formula for A
and B:
e N.-Zzy—Yz- -2y
- N-Xz?—(Tz)?’
Yy—A-Xzx
R=sr—
where
Yz = sum of the a-coordinates of the data points
Yy = sum of the y-coordinates of the data points
¥ xy = sum of the products of the coordinates of the data points
Y a? = sum of the squares of the z-coordinates of the data points
N = number of data points.
That is,

2x=x1+x2+-‘-+$N
Yy=vyit+yr -t +yy
Z:L‘y::cl-yl+x2-y2+--~+xi\y-y_,v

2 2 2 2
Y=zt 4+ oy,
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EXAMPLE 2 Car-Accident-Related Deaths in the U.S.  The following table gives the number in thou-

sands of car-accident-related deaths in the U.S. for certain years.

Year  Number (in thousands)

1990 46.8
2000 43.4
2005 45.3
2007 43.9
2008 39.7
2009 35.9

(a) Use the preceding formulas to obtain the straight line that best fits these data.

(b) Use the straight line found in part (a) to estimate the number of car-accident-
related deaths in 2012. (It is interesting that, while the number of drivers is obvi-
ously increasing with time, the number of car-accident-related deaths is actually
decreasing, maybe because of improvements in car-manufacturing technologies
and added safety measures.)

SOLUTION  (a) The data are plotted in Fig. 3, where z denotes the number of years since 1990. The
sums are calculated in Table 1 and then used to determine the values of A and B.

TABLE 1 Car-Accident-Related Deaths in U.S.

x Years y Number of
since 1990 deaths in thousands xy x?
0 46.8 0 0
10 43.4 434 100
15 45.3 679.5 225
17 43.9 746.3 289
18 39.7 714.6 324
19 35.9 682.1 361
Sa=79 Sy =255 S wy = 3256.5 Yo az? = 1299
N - 3256.5 — 79 - 255
A= = ~ —.39
6-1299 — 79
255+ .39 - 79
B=222%99"0 4764
6
Therefore, the equation of the least-squares line is y = —.39z +47.64 (see Fig. 3).
Y
50 T
L
z AT y = —0.39z + 47.64 "
z
2 30 T
z 20 +
10 T
} t f +— 2z
5 10 15 20
Years since 1990
Figure 3

(b) We use the straight line to estimate the number of car-accident-related deaths in
2012 by setting x = 22. Then, we get

y = (—.39)(22) + 47.64 = 39.06.

Therefore, we estimate the number of car-related accidental deaths to be 39.06
thousand in 2012. » Now Try Exercise 9
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INCORPORATING r il P Method To implement the least-squares method on your TI-83/84,

TECHNOLOGY

select for the EDIT screen to obtain a table used for entering the data. If
necessary, clear data from columns L; and/or Ly by moving the cursor to the top of
the column and pressing [ENTER]. [See Fig. 4(a).]

After the z- and y-values are placed in lists on a graphing calculator, we use the
statistical routine LinReg to calculate the coefficients of the least-squares line. Now
press [>] for the CALC menu, and press [4] to place LinReg(ax+b) on the home
screen. Press to obtain the slope and y-intercept of the least-squares line. [See
Fig. 4(b).]

If desired, we can automatically assign the equation for the line to a function and
graph it along with the original points. First, we assign the equation for the least-
squares line to a function. Select [Y=], move to the function, and press to erase
any current expression. Now, press to select the Statistics variables. Move
your cursor over to the EQ menu, and press for RegEQ (Regression Equation).

To graph this line, press [craPH]. To graph this line along with the original data
points, we proceed as follows. From the [Y=], and with only the least-squares line
selected, press [STAT PLOT] to select Plotl, and press to turn
Plotl ON. Now, select the first plot from the six icons for the plot Type. This
corresponds to a scatter plot. Finally, press [Grapu]. [See Fig. 4(c).]

L1 Lz Lz 1] [CinRea
i g feaalil =gt
£ & a=2
| © b=1. 666666667
Liti= -~
(a) (b) (©)
Figure 4

Check Your Understanding 5

1. Let E= (A+B+2)*+ (344 B)? + (6A + B —8)2. What 2. Find the formula (of the type in Problem 1) that gives

oF

s 28, the least-squares error E for the points (1, 10), (5,8), and
AA" (7,0).
EXERCISES 5
1. Find the least-squares error F for the least-squares line 2. Find the least-squares error F for the least-squares line

fit to the four points in Fig. 5.

fit to the five points in Fig. 6.

1 )

8 o / ) 8

7 y=1llx +3 7

6 ] o 6

5 5

4 4
3. 3

2 2

1 1

1 2 3 4 o 123 45 .

Figure 5 Figure 6
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3. Find the formula (of the type in Check Your Understand-
ing Problem 1) that gives the least-squares error for the
points (2,6), (5,10), and (9,15).

4. Find the formula (of the type in Check Your Understand-
ing Problem 1) that gives the least-squares error for the
points (8,4), (9,2), and (10,3).

In Exercises 5-8, use partial derivatives to obtain the formula for the
best least-squares fit to the data points.

5. (1,2), (2,5), (3,11)
6. (1’8)1 (2,4)v (47 3)

7. (1,9),(2,8), (3,6), (4,3)

8. (1,5), (2,7), (3,6), (4,10)

9. Complete Table 2 and find the values of A and B for the
straight line that provides the best least-squares fit to the
data.

TABLE 2

T Y Ty x?

1 7

2 6

3 4

4 3

Yr= Yy= Xay= Da’=

10. Complete Table 3 and find the values of A and B for the
straight line that provides the best least-squares fit to the
data.

TABLE 3

.Y Ty i

Mlon &~ w o =8
© N W W

r= Sy= Zzy= al=

In the remaining exercises, use one or more of the three methods
discussed in this section (partial derivatives, formulas, or graphing
utilities) to obtain the formula for the least-squares line.

11. Health Care Expenditures Table 4 gives the U.S. per capita
health-care expenditures for the years 2005-2009. (Source:
Health Care Financing Review.)

TABLE 4 U.S. Per Capita Health
Care Expenditures

Years (after 2000) Dollars
5 6,259
6 7,073
7 7,437
8 7,720
9 7,960

12.

13.

14.

(a) Find the least-squares line for these data.

(b) Use the least-squares line to predict the per capita
health care expenditures for the year 2012.

(c) Use the least-squares line to predict when per capita
health care expenditures will reach $10,000.

Table 5 shows the 2012 price of a gallon of fuel (in
U.S. dollars) and the average miles driven per automo-
bile for several countries. (Source: International Energy
Annual and Highway Statistics.)

TABLE 5 Effect of Gas Prices on

Miles Driven
Price Average Miles
Country per Gallon per Auto
Canada $4.42 10,000
England $8.15 8,430
Germany $7.37 7,700
United States $3.71 15,000

Find the straight line that provides the best least-
squares fit to these data.

(a)

In 2012, the price of gas in France was $5.54 per gal-
lon. Use the straight line of part (a) to estimate the
average number of miles automobiles were driven in
France.

(b)

Table 6 gives the U.S. minimum wage in dollars for certain
years.

TABLE 6 U.S. Federal Minimum Wage

1985
3.35

1990
3.80

1995 2000 2005 2010
4.25 5.15 515 7.25

Year
Wage

(a) Use the method of least squares to obtain the straight
line that best fits these data. [Hint: First convert
Year to Years after 1980.]

(b) Estimate the minimum wage for the year 1998.

(c) If the trend determined by the straight line in part
(a) continues, when will the minimum wage reach
$107?

Table 7 gives the number of cars (in millions) in use in
the United States for certain years. (Source: Motor Vehicle
Facts and Figures.)

TABLE 7 Automobile Population

Year  Cars Year  Cars
1990 193.1 2006 250.8
1995 205.4 2007 254.4
2000 225.8 2008 255.9
2005 247.4 2009 254.2

(a) Use the method of least squares to obtain the straight
line that best fits these data. [Hint: First convert
Years to Years after 1990.)

(b) Estimate the number of cars in use in 1997.

35
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(c) If the trend determined by the straight line in part
(a) continues, when will the number of cars in use
reach 275 million?

15. An ecologist wished to know whether certain species of

aquatic insects have their ecological range limited by tem-
perature. He collected the data in Table 8, relating the
average daily temperature at different portions of a creek
with the elevation (above sea level) of that portion of the
creek. (The authors express their thanks to Dr. J. David
Allen, formerly of the Department of Zoology at the
University of Maryland, for providing the data for this
exercise.)

(a) Find the straight line that provides the best least-

squares fit to these data.

Solutions to Check Your Understanding 5

(b) Use the linear function to estimate the average daily
temperature for this creek at altitude 3.2 kilometers.

TABLE 8 Relationship between
Elevation and Temperature in

a Creek
Elevation Average Temperature
(kilometers) (degrees Celsius)
2.7 112
2.8 10
3.0 8.5
3.5 7.5

oOE

L o2 =2A+B+2)-1+2(34+8B) 3

+2(6A+B-8) 6
= (2A+ 2B + 4) + (184 + 6B)
+ (724 + 12B — 96)

=924 4 20B — 92

(Notice that we used the general power rule when differ-
entiating and so had to always multiply by the derivative

6 Double Integrals

of the quantity inside the parentheses. Also, you might
be tempted to first square the terms in the expression for
E and then differentiate. We recommend that you resist
this temptation.)

« B = (A+B-10)"+ (544 B -8)’ + (7A+ B)?. In gen-

eral, IV is a sum of squares, one for each point being fitted.
The point (a,b) gives rise to the term (a4 + B — b)?.

Up to this point, our discussion of the calculus of several variables has been confined
to the study of differentiation. Let us now take up the topic of the integration of
functions of several variables. As has been the case throughout most of this chapter,
we restrict our discussion to functions f (z,y) of two variables.

We begin with some motivation. Before we define the concept of an integral for
functions of several variables, we review the essential features of the integral in one
variable.

Consider the definite integral f( Ib f(z)dz. To write down this integral takes two
pieces of information. The first is the function f (z). The second is the interval over
which the integration is to be performed. In this case, the interval is the portion of
the z-axis from z = a to x = b. The value of the definite integral is a number. In case
the function f(z) is nonnegative throughout the interval from z — q to x = b, this
number equals the area under the graph of f(z) from z = a to x = b. (See Fig. 1.) If
f(x) is negative for some values of z in the interval, the integral still equals the area
bounded by the graph, but areas below the z-axis are counted as negative.

Let us generalize the foregoing ingredients to a function f(z,y) of two variables.
First, we must provide a two-dimensional analog of the interval from = = a to z = b.
This is easy. We take a two-dimensional region R of the plane, such as the region shown
in Fig. 2. As our generalization of f(x), we take a function f(z,y) of two variables.
Our generalization of the definite integral is denoted

4 [ r@vazay

and is called the double integral of f (w,y) over the region R. The value of the double
integral is a number defined as follows. For the sake of simplicity, let us begin by
assuming that f(z,y) > 0 for all points (z,y) in the region R. [This is the analog of
the assumption that f(z) > 0 for all z in the interval from 2 = a to z — b.] This
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Figure 3 Graph of f(z,y)
above the region R.

z

Z

Figure 4 Solid bounded by
f(z,y) over R.

EXAMPLE 1

SOLUTION

Functions of Several Variables

Y
b //\H
Area = f f(z) dx (//_/ z
a
T
a b
Figure 1 Figure 2 A region in the

zy-plane.

means that the graph of f lies above the region R in three-dimensional space. (See
Fig. 3.) The portion of the graph over R determines a solid figure. (See Fig. 4.) This
figure is called the solid bounded by f(x,y) over the region R. We define the double
integral [[ f(z,y)dzdy to be the volume of this solid. In case the graph of f(x,y)

lies parti]a?dly above the region R and partially below, we define the double integral to
be the volume of the solid above the region minus the volume of the solid below the
region. That is, we count volumes below the zy-plane as negative.

Now that we have defined the notion of a double integral, we must learn how to
calculate its value. To do so, let us introduce the notion of an iterated integral. Let
f(z,y) be a function of two variables, let g(z) and h(x) be two functions of x alone,
and let a and b be numbers. Then, an iterated integral is an expression of the form

[ ([ seom)e

To explain the meaning of this collection of symbols, we proceed from the inside out.
We evaluate the integral hz)
/ flz,y)dy
9

g(x)

by considering f(z,y) as a function of y alone. This is indicated by the dy in the inner
integral. We treat x as a constant in this integration. So, we evaluate the integral by
first finding an antiderivative F(z,y) with respect to y. The integral above is then
evaluated as
F(z,Mz)) - F(z,9(z)).

That is, we evaluate the antiderivative between the limits y = g(z) and y = h(z). This
gives us a function of z alone. To complete the evaluation of the integral, we integrate
this function from x = a to & = b. The next two examples illustrate the procedure for
evaluating iterated integrals.

A Double Integral Evaluate the iterated integral

/12 (/34(y—:v)dy>da:.

Here g(z) and h(z) are constant functions: g(z) = 3 and h(z) = 4. We evaluate the
inner integral first. The variable in this integral is y, so we treat = as a constant.

A4(y—m)dy= (—;zf—wy):
(%-16—x-4>—<%-9—x-3>

9
:8—4$—§+3$
g
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Now, we carry out the integration with respect to x:

2 It 71,
/1(§—x>d:c——2-x—§m
7 1 7 1

:<5'2_5’4>_<5—5'1>

=(1-2)-(@3)=2.

So, the value of the iterated integral is 2. » Now Try Exercise 1

EXAMPLE 2 A Double Infegral Evaluate the iterated integral

1 "+ 1
/ (/ 2xy dy) dx.
0 Vel

SOLUTION  We evaluate the inner integral first.
/Hl 2zydy = :L'yQ‘Hl =z(z + 1) — 2(\/7)?
N Ve
=z(z? +2+1)—z-2
=z° + 2% + 2 — 2
=z +2? f2

Now, we evaluate the outer integral.

o 1, 14 1 11 1 13
. 4 3 2
d - S B S o2 S,
/“(x +z° +2)dr 2 —{—337 5% Tit3tiTg
So, the value of the iterated integral is 3. » Now Try Exercise 7

Let us now return to the discussion of the double integral [[ f(z,y)dxdy. When
R

the region R has a special form, the double integral may be expressed as an iterated
integral, as follows: Suppose that R is bounded by the graphs of y = g(x), y = h(z)
and by the vertical lines # = a and = = b. (See Fig. 5.) In this case, we have the
following fundamental result, which we cite without proof.

)

Figure 5 a b

Let R be the region in the zy-plane bounded by the graphs of y = glz), ¥ = hiz),
and the vertical lines = a, = b. Then,

J[ @ dea= [ ( [ s dy) d.
B gle

Since the value of the double integral gives the volume of the solid bounded by the
graph of f(z,y) over the region R, the preceding result may be used to calculate
volumes, as the next two examples show.

ot



EXAMPLE 3

SOLUTION

EXAMPLE 4

SOLUTION

(1,2)

\:l/=«/n_:

Figure 7

Functions of Several Variables

Volume Using a Double Integral Calculate the volume of the solid bounded above by
the function f(z,y) = y — @ and lying over the rectangular region R: 1 < z < 2,
3 <y <4. (See Fig. 6.)

The desired volume is given by the double integral [[(y —x)dz dy. By the result just
)

cited, this double integral is equal to the iterated integral

[ ([ o)

The value of this iterated integral was shown in Example 1 to be 2, so the volume of
the solid shown in Fig. 6 is 2. » Now Try Exercise 13

by
leegd IR S g
7 7 | 771 7
1 /(J
i
; £ J—=r
T
Figure 6

Double Integral over a Region  Calculate [[ 2zy dx dy, where R is the region shown in
R
Fig. 7.

The region R is bounded below by y = /x, above by y = x + 1, on the left by z = 0,
and on the right by z = 1. Therefore,

1 T+1
// 2ry dx dy = / (/ 2xy dy) de = o (by Example 2).

» Now Try Exercise 9

In our discussion, we have confined ourselves to iterated integrals in which the
inner integral was with respect to y. In a completely analogous manner, we may
treat iterated integrals in which the inner integral is with respect to x. Such iterated
integrals may be used to evaluate double integrals over regions R bounded by curves
of the form z = g(y), z = h(y) and horizontal lines y = a, y = b. The computations
are analogous to those given in this section.

Check Your Understanding 6

1. Calculate the iterated integral

2 z/2
e e =
0 0

2. Calculate [[e?~ dz dy, where R is the region in Fig. 8.
i

- dy) dz. v

(2, 1)
o, 0)/‘ x

Figure 8
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EXERCISES 6

Functions of Several Variables

Calculate the following iterated integrals.

1 1 1 1
1 / (/ U+l dy) dz 2. / (/ rydx) dy
i A\
1 1 i -
( me‘ 4 dy) 4. / (/ —yiz dy) dz
0 13
3 2a
5. </ mydu) 6. / (/ ydy) dx
1 0 T
1 22 1 {7
7. </ (z+vy) dy)d 8. / </ vty dy) dx
= 0 0

Let R be the rectangle consisting of all points (z,y) such that
0<z<2,2<y<3. Calulate the following double integrals.

lnterpret each as a volume.
10. //(wy +y?)dx dy
R

9. //o:y? dz dy

R

11, // e " Vdrdy 12, // e’ " dxdy
R R

Caleulate the volumes over the following regions R bounded above

by the graph of f(z,y) = 22 + 42.

13. R is the rectangle bounded by the lines z = 1, z = 3,
y=0,and y = 1.

14. R is the region bounded by the lines z = 0, z = 1 and the

curves y = 0 and y = {/z.

Solutions to Check Your Understanding 6

2 /2 2 1
1. / e?l/-;x: dy dx = / (_62y~.x:
0 0 0 2
1,
—r 26'(“’ ’)dw

Il

» Summary

KEY TERMS AND CONCEPTS

v/2

o dx
0

1 Examples of Functions of Several

Variables

A function f(z,y) of the two variables z and

Yy is a

rule that assigns a number to each pair of values for

the variables.

Given a function of two variables f(z, y), the graph of
the equation f(z,y) = c is a curve in the zy-plane

called the level curve of height c.

The line passing through the points (0,0) and (2, 1) has
equation y = /2. Hence, the region R is bounded below
by y = 0, above by y = x/2, on the left by = = 0, and on
the right by z = 2. Therefore,

2 /2
// e du dy = / (/ e2v—* dy) dx
0 0
R

11,
7 T3¢

by Problem 1.

EXAMPLES

Suppose that, during a certain time period, the number of units of
goods produced with z units of labor and y units of capital is given
by the Cobb-Douglas production function f(z,y) = 40z'/2y'/2,

(a) How many units of goods will be produced with 16 units of
labor and 16 units of capital?

(b) Determine the isoquant or level curve at level 100 of the
production function.
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KEY TERMS AND CONCEPTS

2 Partial Derivatives

The partial derivative of f(x,y) with respect to x,
written %, is the derivative of f(z,y), where y is
treated as a constant and f(z,y) is considered as a
function of = alone. The partial derivative of f(z,y)
with respect to y, written %, is the derivative of
f(z,y), where z is treated as a constant. Higher-order

derivatives are defined similarly.

3 Maxima and Minima of Functions
of Several Variables
First-Derivative Test for Functions of Two
Variables If f(z,y) has either a relative maximum or
minimum at (z,y) = (a,b), then

g—i(a,b) =0 and %(a,b) = 0.

You can use this test to locate candidate points
where the function has a relative extreme value. Once
you have located a candidate point where the first
derivatives are 0, you check whether this point is a

EXAMPLES

Solution

(a) f(16,16) = 40(16)'/% - (16)"/? =40 - 4 - 4 = 640; there will be
640 units of goods produced.

(b) The level curve is the graph of f(z,y) = 100, or
40z y"? = 100

ya o 100 _ 5
VT 102 T 27
25
T Az’
Thus, the isoquant is the hyperbola y = % Each point on the

hyperbola has coordinates (z, %) and represents a combination of

capital z and labor % that yields 100 units of production.

Let f(z,y) = e**+7v.
(a) Compute %f, %, and ?—,f(l,—l).
(b) Compute Z—ZL

da?
Solution
(a) Thinking of y as a constant, we have

of _ i [e-l'2+7y]

Oz~ Ox

Thinking of z as a constant, we have

of _ o [e:vz”y}

. 0 .
-~ e‘:2+7y . a_m' [132 +7y] - 2xe',,2+7y.

- e.r2+7y . aiy [:1,‘2 o 7y] - 7e:r2+7yl

dy Oy
Finally,
of 2 :
ZJ e = 92z e +7y - i R ~b'
8.1:(1’ 1)=2ze a 2e 2e
(b) Start with the formula for %IL, and think of y as a constant;
then,
af o (of 0 22
5% = O (5‘) e

0

— oty (2) + zxa_w[e-"z”y] (Product Rule)

2 2 0
= 2¢® + Ty R4 2ze” + Ty 2 7
= 2e¢ ze ——ax(x + Ty)

=2e T 4 2ze"’2+7~"(2w)

= 2¢%"*+ T (1 + 222).

Let f(z, y) = 2? +y* — 4z — 6y + 10.

(a) Find 4% and ‘;—-yﬁ
(b) Find the points (z, y) where the first derivatives are zero.

(c) Apply the second derivative test at the points in (b) and

decide, if possible, the nature of f(z, y) at each of these points.
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maximum, a minimum, or neither by applying the
second-derivative test for function of two variables.
The outcomes of the second-derivative test depend on

the signs of gfsz-f—(a, b) and

0 f

o*f 0*f ’
Dl )= 5ar " 5y (a:cay)'

(See Section 3 for the full statement and the examples
for an illustration.)

4 Lagrange Multipliers and Constrained
Optimization

To find a relative maximum or minimum of the
function f(z, y) subject to the constraint g(z, y) = 0,
we can use the Lagrange multiplier method. We apply
this method in steps as follows:

Step 1 Form the function
F(z,y, A) = f(z, y) + Ag(z, y).

The number A is called a Lagrange multiplier.

Step 2 Compute the partial derivatives % and %
Step 3 Solve the system of equations

oF or

%_ 1%“079(‘”51/)_0‘

Step 4 If you found more than one point (z, y) in
Step 3, evaluate f at all the points. The largest of
these values is the maximum value for f, and the
smallest is the minimum value of f.

5 The Method of Leas: Squares

Suppose that you have a set of N data points

(1, v1), (@2, Y2), ..., (Ty, Yy ), and you have reasons
to believe that y is linearly related to @, or at least
approximately. Then, you can look for a linear function
y = Az + B that best fits the given data. This line is
called the least-squares line or regression line. The
coefficients A and B are computed as follows:

_ N -Yzy—Yz-Xy
~ N-Xz! — (Zz)?
_Zy—-A- ¥z

B N ,

EXAMPLES

Solution
2] a .,

(a) 5'—3{—:.%[;17‘+y2—4$—~6y+10]:2:5—/1
af B
a—y = 2y 6

(b) The partial derivatives are equal to 0 when z = 2 and y = 3, so

the only point where both partial derivatives are 0 is (2, 3).

(c) The nature of the function at the point (2, 3) depends on the

signs of D(2, 3) and gj—,{(?, 3). We have

&f . Bf #f 8., _
Bt 2 G =0 Fogy - pp W=D
So,
PEF Bl *r N\t B
D(z, y) = Ero i (m) =(2)(2)-0=4.

92
Since D(2, 3) =4 > 0 and 3~'—,£(2, 3) =2 > 0, according to the
second-derivative test, f(z, y) has a relative minimum at (2, 3).

Use Lagrange multipliers to find the minimum value of
f(z, y) = «* + y? subject to the constraint & + y = 4.

Solution

Step 1 Write the constraint in the form z +y — 4 = 0. Then,
g(@, y)=z+y—4and Fz,y, \) =a> + > + Az +y — 4).

Step 2 c’)_F:_ /\.?_Ii_
bR 2z + ,ay—2y+)\
Step 3 Solve
2z4+2 =0 (1)
2y+X =0 (2)
r+y—4=0 (3)

Subtract (2) from (1) and get 2z —2y =0 or . = y. Use & = y in
(3) and get 2y = 4 or y = 2. Hence z = 2.

Step 4 At the point (2, 2), f takes on the value 8, which is the
minimum value of z? + y? subject to x +y = 4

Table 1 shows the number of seniors who graduated from a high
school in Jefferson City, Missouri, in the years 2007 to 2012.

(a) Find the line that best fits these data.

(b) Use the straight line that you found in part (a) to approximate

the number of seniors who will graduate in 2013.
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KEY TERMS AND CONCEPTS EXAMPLES
Wit TABLE 1 Students’ Data
Yz = sum of the z-coordinates of the data points Years (after 2000) Graduoting sitiars
Yy = sum of the y-coordinates of the data points 7 245
Yy = sum of the products of the coordinates of the 8 275
data points 9 295
Yz? = sum of the squares of the z-coordinates of the 10 215
data points 11 218
N = number of data points. 12 212
Solution

(a) Let = denote the number of years since 2000 and y the number
of graduating seniors. Then, our data points are

(7, 245), (8,275), (9, 225), (10, 215), (11, 218), (12, 212).
Let y = Az + B denote the line of best fit through these points.
The sums are calculated in Table 2 and then used to determine the
values of A and B.
TABLE 2 Students’ Data
2

x Yy Ty i
7 245 1715 49
8 275 2200 64
9 225 2025 81
10 215 2150 100
11 218 2398 121
12 212 2544 144

> =57 Sy = 1390 Say = 13032 3 x? =559

In this example, N = 6, since we have six data points.
Applying the formulas for the coefficients, we find

N -Yzy — Zz - Xy

A= N o - (op
613,082 — 571390
6559 — (57)2

346
= -3 ~ 989
Yy—A- Xz

B~ N
1390+ 38 .57
- 6

34,186
= — ~ 325.58.
o5~ 325.58

Thus, the line of best fit is y = —9.89z + 325.58, which is a
decreasing line.

(b) To approximate the number of graduating seniors in 2013, we
set ¢ = 13 in the formula for the line of best fit and get
y = —9.89(13) + 325.58 ~ 197.01

Thus, in 2013, the number of graduating seniors will be
approximately 197.
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Functions of Several Variables

KEY TERMS AND CONCEPTS
6 Double Integrals

For a function of two variables f(z, y), we can define a
double integral where (z, y) varies over a region R in
the zy-plane. In the iterated double integral

/_Z A$ f(z, y)dz dy,

the inner variable x varies from 0 to 3, while the outer
variable y varies from —2 to 2. The point (z, y) in this
double integral varies over the rectangular region
0<z <3, -2 <y <2 Evaluate the integral.

If, in the iterated integrel, the symbol dy dz
appears, instead of dz dy, then you should integrate
with respect to y first. This is the case with the

iterated integral
2 5
| [ @ wiys
~gJ1

The inner integral, which you should compute first, is
with respect to y.

EXAMPLES

1 2
Evaluate the iterated integral/ / vy’ dx dy.
o Jo
Solution

Step 1 Evaluate the inner integral in z, while treating y as a
constant.

2 2 9 2
2 :y_ 2‘-::[_/_22_0___22
/oa:yda: 5|, 2( ) Yy

Step 2 Evaluate the outer integral of the function 2y that we

f()ul]d ill St,ep .
1 23/ d = == : 1 —
/()\ : 3y 'U

Thus, the double integral is equal to %

» Fundamental Concept Check Exercises

1. Give an example of a level curve of a function of two

variables.

2. Explain how to find a first partial derivative of a function 8.

of two variables.

function of several variables.

State the second-derivative test for
variables.

7. Explain how to find possible relative extreme points for a

functions of two

. Interpret

. Explain how to find a second partial derivative of a

function of two variables.
What expression involving a partial derivative gives an
approximation to f(a + h,b) — f(a,b)?

8_;;(2’3) as a rate of change.

. Give an example of a Cobb-Douglas production function.

What is the marginal productivity of labor? Of capital?

» Review Exercises

1.

Let f(z,

y) = z/y/(1 + ). Compute f(2,9), f(5,1), and

10.

11.

12.

. Outline how the method of Lagrange multipliers is used

to solve an optimization problem.

What is the least-squares line approximation to a set of
data points? How is the line determined?

Give a geometric interpretation for [[ f(z,y) dz dy, where
I
f(z,y) = 0.

Give a formula for evaluating a double integral in terms
of an iterated integral.

of af
6. L g =3z — Lyt ; .
1(0,0). et fl@,y) = 32— 3 8z > 3y
2. Let f(z,y,2) = x%e¥/*. Compute f(—1,0,1), £(1,3,3), Let — /v T af af
and £(5. —2.2). 7. Let f(z,y) = e*/¥. Find = 32 and =— dy'
3. A Savings Account If A dollars are deposited in a bank 8. Let f(z,y) = z/(z — 2y). Find 2 and @C_
at a 6% continuous interest rate, the amount in the ac- Ox dy
count after ¢ years is f(A,t) = Ae’"%". Find and interpret 5f 8 Y
J(10,11.5). 9. Let f(z,y,z) = z® —yz*. Find df 3:/(’ and 6?
4. Let f(z,y,A\) =ay + A5 -2z —y). Find f(1,2,3). .
g 10. Let f(z,y,\) =ay+AX5—z—y). F md?-[ gf,< dg{
of . oI

. Let f(z,y) = 32% + zy + 5y*. Find = an

oz dy



Functions of Several Variables

11. Let f(z,y) = 2y + 8. Compute g—£(1,2) and %(1,2).
af
12. Let f(z,y,2) = (¢ + y)z. Evaluate 3 at (z,y,2) =
(2,3,4).
0:f o0*f O°f

e b 3 1.4 3
13. Let f(z,y) = =° — 2%y + 5y*. Find 522 W’ oz 0y’

and 0
" Oyox”
. oy 4
A = 58 2w O oy oJ
14. Lez f(z,y) = 22° + 2*y — y*. Compute 522 32 and
o' f
, = 2).
9505 at (z,y) = (1,2)

15. A dealer in a certain brand of electronic calculator finds
that (within certain limits) the number of calculators she
can sell per week is given by f(p,t) = —p + 6t — .02pt,
where p is the price of the calculator and ¢ is the number

of dollars spent on advertising. Compute %(25, 10,000)

and (?)_{(25’ 10,000), and interpret these numbers.

16. The crime rate in a certain city can be approximated by
a function f(z,v,z), where @ is the unemployment rate,
y is the number of social services available, and z is the

size of the police force. Explain why == > 0, ﬂ <0,
oz oy
af
and *é; < ().

In Exercises 17-20, find all points (z,) where f(z,y) has a possible
relative maximum or minimum.

17. f(z,y) = -z + 24> + 6z -8y +5
18. f(z,y) =a* +3zy —y* —z—8y +4
19. f(z,y) =« +32? +3y° =6y + 7

20. f(z,y) = sa* +4zy +y* +8y* + 3 +2

In Exercises 21-23, find all points (2, ) where f(z,y) has a possible
relative maximum or minimum. Then, use the second-derivative test to
determine, if possible, the nature of f(z,y) at each of these points. If
the second-derivative test is inconclusive, so state.

21. f(z,y) = 2° + 3zy + 4y* — 13z — 30y + 12
22. f(z,y) =T2* —bzy+y* +T—y+6
23. f(z,y) =2° +y* -3z -8y +12

24. Find the values of z, y, z at which
flx,y,2) = +4y* +52° — 6z +8y +3

assumes its minimum value.

Use the method of Lagrange multipliers to:

25. Maximize 3z° + 2zy — y*, subject to the constraint
5—2x—y=0.

26. Find the values of z, y that minimize
—a* — 3zy — }y* + y + 10, subject to the constraint
10—z —y=0.

27. Find the values of z, y, z that minimize
3% + 2y° + 2° + 4z + y + 3z, subject to the constraint
4—z—y—2z=

28. Find the dimensions of a rectangular box of volume 1000
cubic inches for which the sum of the dimensions is
minimized.

29. A person wants to plant a rectangular garden along one
side of a house and put a fence on the other three sides.
(See Fig. 1.) Using the method of Lagrange multipliers,
find the dimensions of the garden of greatest area that
can be enclosed with 40 feet of fencing.

Figure 1 A garden.

The solution to Exercise 29 is x = 10, y = 20, A = 10. If 1
additional foot of fencing becomes available, compute the
new optimal dimensions and the new area. Show that the
increase in area (compared with the area in Exercise 29)
is approximately equal to 10 (the value of A).

30

In Exercises 31-33, find the straight line that best fits the following
data points, where “best” is meant in the sense of least squares.

31, (1,1),(2:3), (3;6)
53, (1,13, (8,4,(5;7)

33. (0,1), (1,-1), (2,-3), (3,-5)

In Exercises 34 and 35, calculate the iterated integral.

34. /01 </ﬂ4($\/17+y)dy> dz

"

35. /0 (/14(2;1;y4 +3)dy> da

In Exercises 36 and 37, let R be the rectangle consisting of all points
(z,y),suchthat0 <z <4,1 <y <3, and calculate the double

integral.
36. //(2x+3y) dz dy 37. //Sdmdy
R R

38. The present value of y dollars after = years at 15% con-
tinuous interest is f(z,y) = ye %", Sketch some sample
level curves. (Economists call this collection of level curves
a discount system.)

45
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Functions of Several Variables
Learning Objectives

1 Examples of Functions of Several Variables

¢ Introduce functions of two and three variables.

* Discuss examples of functions of several variables.

e Evaluate functions of several variables.

* Discuss applications in architectural design and economics.

* Define level curves of functions of several variables and discuss some of their applications.

2 Partial Derivatives

* Define a partial derivative of a function of several variables.
e Compute and evaluate partial derivatives.

* Interpret a partial derivative as a rate of change.

e Approximate a function using partial derivatives.

¢ Discuss applications of partial derivatives.

3 Maxima and Minima of Functions of Several Variables

* Explain the meaning of an extreme value for a function of several variables.

* Discuss methods for finding maxima and minima of functions of several variables based on
conditions on the partial derivatives.

* State and apply the second-derivative test for finding extreme values of functions of two variables.

* Present several optimization problems involving extreme values of functions of several variables.

4 Lagrange Multipliers and Constrained Optimization

e Explain optimization problems with constraints involving functions of several variables.
* Show how to solve optirization problems with constraints using the method of Lagrange multipliers.
* Use Lagrange multipliers to solve applied optimization problems.

5 The Method of Least Squares

* Introduce the technique of fitting a straight line through a given set of data.

* Explain how to measure the least-squares error when fitting a curve through data.

* Discuss the least-squares line, or regression line, that minimizes the least-squares error.

* Explain how partial derivatives of functions of several variables can be used to find the regression line.
* Discuss applications of least-squares method to analyzing and predicting data.

6 Double Integrals

* Present the concept of double integrals of functions of two variables.

* Evaluate examples of double integrals using iterated integrals.

* Discuss regions in the plane and explain their role in evaluating double integrals.
* Compute volumes of solids using double integrals.

Sources

Section 2

1. Exercise 32, from Stone, R. (1945). The analysis of market demand. Journal of the Royal Statistical Society, 108
286-391.

2. Exercise 38, from Routh, J. (1971). Mathematical preparation for laboratory technicians. Philadelphia, PA: W. B.
Saunders, p. 92.

25

Section 3
1. Example 3, from March. L. (1972). Elementary models of built forms. In L. Martin & L. March (Eds.), Urban
space and structures. New York, NY: Cambridge University Press.
Section 5
1. Exercise 11, from U.S. Health Care Financing Administration, Health Care Financing Review, Spring 2012.



Functions of Several Variables
Answers

Exercises 1

1. #(5,0) =25, £(5,—2) = 51, f(a,b) = a® — 3ab— b2 3. 9(2,3,4) = -2, g(7,46,44) = 7/2

5. f(2+h,3) =3h+6,f(2,3)=6,f2+h,3) - f(2,3)=3h T. C(z,y,z) = 6zy + 10z +10yz 9. f(8,1) =40,
£(1,27) = 180, £(8,27) =360  11. ~850. $50 invested at 5% continuously compounded interest will yield $100 in
13.8 years 13. (a) $1875 (b) $2250; yes  15. y C=0 17, y

19. f(z,y) =y — 3z  21. They correspond
to the points having the same altitude above
sea level. 23. (d) 25. (c)

8]

Exercises 2
1. 5y, 5z 3. 4xze¥, 2z%¢¥ 5. = — %; ——&;
2y 2z 3

7. 42z —y +5), —2(2z —y+5) 9. (2’ + 3z%e3%) Iny,

< |
+
l:;:&zlr—‘

vy 2 1+z%y
1. , — 13. 15, —, —, —
(x+v)?2 (z+y)? 2V L z 'z 22

19. 1,3 21, Qf—-: 2zy, %(2, —~1) = —4. If = is kept constant at 2 and y is allowed to vary near —1, then f(z,y)

oy
2 . 2
changes at a rate —4 times the change in y. 23. ?i = 3z2y + 2%, g—zj; % = g—y—é

ox
—?2—f—82f =322 +4 25. (a) Marginal productivity of labor = 480; f. ital =40 (b) 480h
dyor 020y T Y . (a) Marginal productivity of labor = 480; ot capital =
(c) Production decreases by 240 units. 27. If the price of a bus ride increases and the price of a train ticket
remains constant, fewer people will ride the bus. An increase in train ticket prices coupled with constant bus fare
should cause more people to ride the bus. ~ 29. If the average price of audio files increases and the average price of
an MP3 player remains constant, people will purchase fewer audio files. An increase in average MP3 player prices

coupled with constant audio files prices should cause a decline in the number of MP3 players purchased.
2

oV ' pe OV £ OF _ 45 s,
31. 5(20,300) = ~06, —7(20,300) = 004 33. 8f/or >0, 0f/om >0, 8f [Op <0 35. 53 = ——a "yl

¥’ jy 1 17. zeV*, x22e¥*, z(yz + 1)e¥*

= 61y, z® + 4zy, = 4z,

marginal productivity of labor is decreasing.

Exercises 3

1. (—2v1> 3. (26?11) 5. (13"3)’ (—1’_3) 7. (\/gal)v (\/5,—1), (—\/5,1), (—\/ga—l) 9. (1/3)4/3)

11. Relative minimum; neither relative maximum nor relative minimum.  13. Relative maximum; neither relative
maximum nor relative minimum; relative maximum.  15. Neither relative maximum nor relative minimum.

17. (0, 0) Relative minimum  19. (-1, —4) relative max ~ 21. (0,—1) relative min  23. (—1,2) relative max:
(1, 2) neither max nor min  25. (1/4,2) min; (1/4,—2) neither max nor min 27. (1/2,1/6,1/2)

29. 14 in. x 14 in. x 28 in.  31. z =120, y = 80

Exercises 4

1. 58atz=6,y=2,A=12 3. 13atz=8y=-3,A=13 5. z=1/2,y=2 T7.5,9 9. Base 10 in.,
height 5 in.  11. F(z,y,)\) = dzy + A(1 —2* —y?); V2x V2 13. F(z,y,A) = 3z + 4y + A(18,000 — 9z — 492);
z=20,y=60 15. (a) F(z,y,)) = 96z + 162y + A(3456 — 64a3/4y'/4); £ = 81, y = 16 (b) ¥=8  17. z=12,
y=22z=4 19.2=2,y=3,2=1 21; F(:v,y,z,)\)=3wy~|—2xz+2yz+)\(12——xyz);m:2,y=2,z=3
23. F(z,y,2,\) = oy + 2z2 + 2yz + A(32 —qyz);c=y=4,2=2

Exercises 5

1. E=67 3. E=(2A+B-6)? +(5A+B—10?+(9A+B—15)? 5. y=45c-3 T.y= —2r +11.5

9. y=—ld4z+85 11. (a) y=404.9z +4455.5 (b) 9314 (c) 2014 13. (a) y=.ldzv+ 2.38 (b) $4.90 per
hour (c¢) = = 54.5, or the year 2035  15. (a) y = —4.24c+22.01 (b)y= 8.442 degrees Celsius

Exercises 6
1. e2—%+1 B8.2-e2—¢* 5.309% 7.5/3 9.38/3 1L edte?—e3—e?t 13.9%

47
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Functions of Several Variables

Answers to Fundamental Concept Check Exercises
1. f(z, y) = 2y + , level curve at height 10 is the graph of f(z, y) = 10 or 2%y + x = 10. Solving for y, we find
Y= Lq’j—’ 2. To find the first partial derivative with respect to = of f(z, ), treat y as a constant and differentiate

the formula for f (z, y) with respect to z. The partial derivative with respect to ¥ is defined similarly. 3. To find a
92

second partial derivative of f(z, y)—say, the second partial derivative with respect to x, %é—treat Y as a constant

and differentiate the formula for (—(3’7’ with respect to x. 4. f(a+ h,b) — f(a,b) ~ %(a, b)-h 5. If z is kept

constant at 2 and y is allowed to vary near 3, then f(z, y) changes at a rate that is %(2, 3) times the change in .

6. A Cobb-Douglas production function: f(z, y) = 6002%5y%>, The marginal productivity of labor is %f The

marginal productivity of capital is Siu 7. Look for points where all the first partial derivatives are 0. For functions

of two variables, you can apply the second derivative test. 8. See Section 3 for the statement of the

second-derivative test for functions of two variables. 9. To find a relative maximum or minimum of the function

f(z, y) subject to the constraint g(x, ) = 0, we can use the Lagrange multiplier method as follows; Form the

function F(z, y, \) = f(z, y) + Ag(x, y). Compute the partial derivatives %JE and % Solve the system of equations
% = (), % =0, g(z, y) = 0. If you found more than one point (z, y) in Step 3, evaluate f at all these points. The

largest of these values is the maximum value for £, and the smallest is the minimum value of f.  10. The
least-squares line approximation to a set of data points is the line that best fits the data in the sense that it
minimizes the least-squares error (the sum of the squares of the distances from the given data points to the line). If
the line is y = Az + B, then the coefficients are computed as follows

N -Yzy—-Xz.-XTy _Xy—-A-Zz
~ N-%a22 —(%g)?’ B N

11. [ [ f(z,y) dz dy is the volume of the solid bounded above by f(z,y) > 0 and lying over the region R. 12, Let
R be the region in the zy-plane bounded by the graphs of y = g(z), y = h(zx), and the vertical lines x = a;m=b,

Then, | o
//R f(z,y)dedy = [) </{1(l’(;) fz,y) dy) da.

Chapter Review Exercises
1. 2,5/6,0 2. f(-1,0,1) =1, f(1,3,3) =e, f(5,~2,2) =25/e 3. ~19.94. Ten dollars increases to 20 dollars in
11.5 years. 4. f(1,2,3)=8 5. 6zx+y,z+10y 6. Of/0x =3, 8f /0y = —2¢43 7. le"'/-”, —%e"'/?”

ﬁ =2y af 2z ! !

—, = — . 3%, —22, — ‘ =y -], ( Yy=x—A\ OF/ON=5—2—
=GP By EI=TE 9. 322, »—2yz 10, 0f/0x =y — X, Of /Oy =z — ), Of/ON=5—-x—y
of of ; G 0*f
11. 6, 1 DA =2 o = . 202° — 12zy, 6y%, —622, —62° . =122 +2, 5 =—
161 12 55 =2 5234 =4 13. 200° - 122y, 642, ~62, ~62° 14 g7 = W =2
azf =: 20 62f (1:2) =2 82f(l 2)=16 15. —201, 5.5. At the 1 1 p=25,t= 10,000 incr in pri f
9wy — 2% Bty 1D =2 57 (1,2) = g , 9.5, 1e level p = 25, t = 10,000, an increase in price o

$1 will result in a loss in sales of approximately 201 calculators, and an increase in advertising of $1 will result in the
sale of approximately 5.5 additional calculators.  16. Increases with increased unemployment and decreases with
increased social services and police force size.  17. (3,2) 18. (2,-1)

19. (0,1), (=2,1) 20. (--11,2), (5, —2) 21. Min at (2,3) 22. Relative 38.
minimum at (1,3). 23. Min at (1,4); neither max nor min at (—1,4).

24. Minimum value at (3,-1,0). 25. 20; z = Jy=-1 26.z=7y=23

27. 2 = 1/2, y = 3/2, 2 = 2 28.z = y =2 =10 29. F(z,y,\) =

Ty + M40 =2z —y); 2 = 10, y = 20 30. z = 10.25 ft, y = 205 £t

3.y = 5/2z -5/3 32. y = 3/2z — 1/2 33.y = -2z+1 34. 32/3

35. 5160 36. =80 37. 40
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