
A FEW NOTES ON NOTATION

1. Variables, and why we often use letters x , y  and f .  There are two 
types variables: independent and dependent variables:

o The independent variable is the variable whose value can be 
anything; that is, its value does not depend on the value of some 
other variable.  It also known as the input variable, as its value is 
input into a function, which then outputs some other value which 
depends on what value was input.  The independent variable is often 
denoted as x  (see a brief explanation below about why).

o The dependent variable is the variable whose value depends on the 
independent variable.  The dependent variable is often denoted y , 
simply because it is the next letter after x .

Historically, x  basically comes from the word that means “thing” in 
Arabic.  See a slightly more detailed explanation at 

http://www.newton.dep.anl.gov/askasci/math99/math99228.htm.

Functions are often given the letter y  or f , which simply stands for 
“function.”  We write )(xfy   to say “ y  is a function of x ” i.e. the value 
of y  depends on the value of x .”  For example, we might write 

15 2  xy , or )(xfy   where 15)( 2  xxf .  So in this case, x  is the 
independent variable, and y  is the dependent variable, i.e. the variable 
whose value is a function of (i.e. depends on) the independent variable x .

2. Why  ?    is “delta,” the Greek letter for “d” which stands for 
“difference”—we tend to use the word “change” rather than “difference.”  
We are often interested in how much a function f  changes relative to how 

much x  changes; that is, we are often interested in 
x
f

x
f

in change
in change


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How much the function f  changes will of course depend on how much x
changes.  Given a particular value of x , if the value x  changes by x  to 

xx  , then the value of f  changes from )(xf  to )( xxf  .  The change 
in x  is simply the difference between its new value and its old value:

xxxxx  )(  (which is redundant, of course).  Similarly, the 
change in function f ’s value is )()( xfxxff  , so that
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.  Sometimes instead of x  we use a letter, such as h .  

So, for example, as x  increases by h  from x  to hx   (so x , the change 

in x , is simply h ) we can write 
h

xfhxf
x
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3. Infinitely small change.  The letter “d” (where again “d” is “difference”) is 
used when the change or difference mentioned in Note 2 is infinitely small.  
“Infinitely small” is another way of saying “is getting smaller and smaller” 
or “getting closer and closer to 0.”  So 

x
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  where x  and f  are 

infinitely small.  We can write this as 
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true that 0f  if 0x .  In other words, )()( xfxxff 
automatically gets closer and closer to 0 (since )( xxf   gets closer and 
closer to )(xf ),  as x  gets closer and closer to 0, which is why we do not 

need to write something like 
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4. Units, interpretation, and other variable letters.  Since  

x
f

dx
dfxf

in change
in change)('  , where these changes f  and x  are infinitely 

small, then the units of 
dx
df  are simply 

x
f

ofunits
ofunits .  For example, 5)2(' f

means that at the current value 2x , f  would increase by approximately 
5 units for each increase in x  of 1 unit (so if x  were to increase by 2 units, 
f  would increase by approximately 10 units, if x  were to increase by .5 

units, f  would increase by 2.5 units, if x  were to decrease by 1 unit, f
would decrease by 5 units, and so on).  Consider a more realistic example: 
suppose demand for coffee D , measured in tons per day, in a certain city is 
a function of its price p , measured in dollars per pound.  Then 

p
D

dp
dDpD

in change
in change

)('   is how demand would change if p  were to 

increase by 1 unit, that is, by $1 per pound.  Suppose that  3.1)3(' D .  
Adding units makes this a bit easier to interpret:  

3.1)/pound3($'
$/pound
tons/dayD , which means that if the current price is 

$3/pound, a $1/pound increase in price would result in a drop (a drop, since 
3.1  is a negative number) in demand of approximately 1.3 tons/day.  On 

the other hand, 05.0)30(' D  means that if the current price is $30/pound,
a $1/pound increase in price would result in a drop in demand of 
approximately 0.05 tons/day.  This very small drop in demand is probably 
due to the fact that the demand would be so low to begin with if coffee 
were currently $30/pound, so that there would not be much room for 
demand to drop even further if the price were to rise by $1 per pound.



SLOPE OF A FUNCTION

We next briefly discuss slope and what it means.  For now we’ll just consider 
straight lines.  Consider the line 75  xy  or equivalently 75)(  xxf .  We list 
several values of x  and y  in the table below.

x y

0 7

1 12

2 17

 

k 75 k

1k 7)1(5 k 125  k

The slope of a line tells us how much y  changes as x  increases by 1.  In the 
above example, the slope is 5, which means that y  changes (in this case, it 
increases, since the slope 5 is positive) by 5 if x increases by 1.  Notice this in the 
table.  For example, when x  changes from 1 to 2, y  changes from 12 to 17, and 
when x  changes from k  to 1k , y  changes from 75 k  to 125 k , and of
course 125 k is 5 greater than 75 k .  Similarly, if we use the notation f
instead of y , as we often do, so that we have 75)(  xxf , then f increases by 
5 if x increases by 1.  

As another example, now with a negative slope, if 117.3)(  xxf , then f
decreases by 3.7 if x increases by 1.  In general, the slope of any function (not 
just a straight line) at any particular point is the amount by which the function 
increases as its input variable x  increases by 1 unit.



CHANGE IN FUNCTION RELATIVE TO CHANGE IN ITS INPUT VARIABLE

Given a function )(xf , quite often we are interested in how much f  changes 

relative to how much x  changes.  That is, we are interested in 
x
f




.  Be sure you 

read Note 2 at the beginning of this Review.  

For example, suppose that f  is the number of toasters a factory produces and x  is 
the number of employees the factory has employed.  The number of toasters 
produced each day will depend on the number of employees working.  That is, f
is a function of, x :  presumably the larger x  is, the larger f  will be.  Suppose that 

100)5( f  and 190)8( f , that is, this factory produces 100 toasters with 5 
employees and 190 toasters with 8 employees.  If the factory currently has 5 
employees, then adding 3 more employees will increase the number of toasters 
produced from 100 to 190.  It is handy to write the change in f  relative to the 
change in x  as

employeeper  toasters30
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That is, if there are currently 5 employees, then on average for each additional 
employee, we will be able to produce 30 additional toasters.



A SIMPLE REAL-LIFE EXAMPLE TO MOTIVATE DERIVATIVES

Sometimes we are interested in 
x
f




 where x  is extremely small.  Be sure you 

read Notes 2 and 3 at the beginning of this Review.  Consider the following 
example.

Suppose you are driving from Malibu to San Diego, and suppose that San Diego is 
exactly 100 miles away.  Let position )(tpp  .  That is, position p  is a function 
of time t  (remember we don’t always have to use the letters x  and f ), where t  is 
the number of hours after you leave Malibu on your trip to San Diego.  Then 

0)0( p  means that at time 0t  your position is 0p .  Similarly, 100)2( p
means that at time 2t  your position is 100p , that is, after 2 hours you are 100 
miles from where you started (hopefully you are now in San Diego, if you were 
driving in the right direction).  Then of course your average speed for the entire 
trip would simply be the total distance traveled divided by the total time you were 
traveling, which for this example is 

.miles/hour50
hour1

miles50

hours2

miles100


Suppose you would like to know your speed at a specific time in your trip (this is 
often referred to as instantaneous speed), but that your car does not have a 
speedometer.  Suppose you are interested in your instantaneous speed at 1t , 
exactly one hour into your trip.  Without a speedometer, you could simply use 
your average speed of 50 mph for the entire trip as an estimate for your 
instantaneous speed at 1t .  Unfortunately, this average speed may or (more 
likely) may not be a very good estimate for your instantaneous speed, unless you 
happen to drive at exactly the same speed the entire trip.  A better estimate for 
your instantaneous speed at 1t  would be to find your average speed between 

1t  and some other time just a bit later than 1t , say one minute (
60
1  of an 

hour) later.  Suppose that 4.53)1( p  and 3.54)1(
60
1 p , that is, after one hour 

you have traveled 53.4 miles and after one hour and one minute you have traveled 
54.3 miles.  Then your average speed during that one minute of your drive is

hourper miles54
hour

mile9.04.533.54
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This average speed of 54 mph is probably a better estimate for your instantaneous 
speed at 1t  than the average speed of 50 mph for the entire trip.  If your average 
speed over this single minute is a better estimate of your instantaneous speed at 

1t  than the average speed over the entire two hours, then your average speed 
over an even smaller interval of time is probably an even better estimate.  Let’s 
assume still that 4.53)1( p .  Let h  be a certain amount of time after 1t , so for 

example 
60
1h  means we are using our position at time 

60
1

60
1 11 t , as we 

just described.  For different values of h , ranging from larger to smaller, we can 
find the average speed for each interval of time between 1t  and ht 1 .

h ht 1 )(tp Average speed between 1t  and ht  1

1 2 100.00
12
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
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miles40.5300.100 
 hourper miles6.47

0.1 1.1 58.60
11.1

)1()1.1(


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hour1.0

miles40.5360.58 
 hourper miles52

0.01 1.01 53.95
101.1
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
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hour01.0

miles40.5395.53 
 hourper miles55

0.001 1.001 53.46
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
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hour001.0

miles40.5346.53 
 hourper miles60

As we said above, the smaller h , the better the estimate is for the instantaneous 
speed at 1t .  The best estimate is probably the estimate for which we used the 
smallest interval of time, the estimate of 60 mph measured over 0.001 hour (3.6 
seconds).  That is, your average speed of 60 mph from 1t  hour to 1t  hour  
and 3.6 seconds is probably a very good estimate of your instantaneous speed right 
at 1t .  



In each estimate above, the average speed between time 1t  and ht  1  is the 
change in position divided by the change in time, that is,
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Also remember that we know that the smaller h  is, the better 
h

php )1()1( 
 is as an 

estimate for the instantaneous speed at 1t .  Theoretically, the instantaneous 

speed at 1t  is simply 
h

php )1()1( 
 where we let h  get smaller and smaller, that 

is, 
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.  In this case, at 1t , we write 
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(Again, be sure you understand Notes 2 and 3 at the beginning of this Review.)  
To summarize notation, where 1t , where h  is the change in time, 
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In general, for any function )(tpp   (not necessarily position as a function of 

time), 
dt
dp

 is the rate of change of p  with respect to t , that is, how much p

changes relative to t , as discussed in Note 4 at the beginning of this Review.  For 

the above example of driving from Malibu to San Diego, 
dt
dp

 is the rate of change 

of position with respect to time (how much did our position change relative to how 
much time went by)—of course we usually simply call this speed or velocity.



ANOTHER EXAMPLE TO MOTIVATE DERIVATIVES

Sometimes we are interested in the slope of a function at a particular point.  

Suppose that we are interested in the slope of the function 2)( xxf   at 1x , as

seen in the figure below.  The slope of the purple line is the slope of 2)( xxf   at 
1x .  

Remember that slope is rise over run, the change in the function f  divided by the 
change in the variable x  that caused the change in the function.  For example, 
given two points ))(,( 11 xfx  and ))(,( 22 xfx , the slope of the line between these 
two points is 
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To find the slope of the function 2)( xxf   at 1x , we take a second point near 
1x , say hx 1  where h  is small, and then find the slope of the line between 

the two points )1,1(  and ))1(,1( 2hh  .  The slope of the line that passes through 
these two points is an estimate for the slope of the function right at 1x .  The 
smaller h  is (that is, the closer this second point is to the point we are interested 
in), the better the estimate will be.  In the following figure we illustrate this where 

1h , so that the second point used is at 2111  hx .  In the figure:

 The blue curve is the function 2)( xxf  .

 The purple line is the line passing through and tangent to the function at the 
point )1,1(  and whose slope of 2 is the true slope of the function at 1x .

 The green line is the line passing through the function at the two points 

)1,1(  and )4,2( .  The slope of this green line is 3
1
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.  We 

use this slope as an estimate for the slope of the function at 1x .  3 is not a 
very good estimate for the actual slope of 2, since the point 2x  is not 
really that close to 1x , and we generally only get good estimates if the 
second point is relatively close to the first point.



We list (but we don’t graph) some other estimates for the slope of the purple line 
by taking points hx 1  closer (i.e. smaller values of h ) to the point of interest 

1x

h h1 Slope of line through ))1(,1( f  and ))1(,1( hfh 

1 2
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12 22 
 0000.3
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1.0

11.1 22 
 2.1000

0.01 1.01
101.1
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
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01.0

101.1 22 
 2.0100

0.001 1.001
1001.1

)1()001.1(


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001.0

1001.1 22 
 0010.2

Again, the smaller h is, the closer the second point is to the first point, and the 
better the estimate is for the slope of the green line.  It would appear that the true 
slope (rate of change) of the function at 1x  is somewhere around 2.



HOW DO WE FIND 
dx

df
(x)f'   EXACTLY RATHER THAN JUST ESTIMATING IT?

Remember that 
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 .  See beginning Notes 2 and 3.

For example, if 2)( xxf  , then at a particular value of x ,
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hx
h




2lim
0

Can we plug 0h  in yet?  Yes.

02  x

x2

So, for example, just above we found the slope of 2)( xxf   at 1x  is something 

close to 2.  Now we see that 2)1(2)1(' f  exactly.

Note that in finding the above limit, we cannot plug the value of 0h  into the 
fraction until the second to last step, as otherwise we would be dividing by 0 in the 
previous steps.  We can compute virtually all of the limits given in the table on the 

next page using the definition of a derivative 
h

xfhxf
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TABLE OF RULES FOR FINDING DERIVATIVES

Rule Example

Function Derivative Function Derivative

C 0 5 0

Cx C x5 5

nx 1nnx
7x 67x

xe xe xe5 xe5

xln x
1 xln5 x

5

)(xCf )(' xCf 35x 235 x

)()( xgxf  )(')(' xgxf  7
7
13 3

1




xxx
7
1

3
12 3

4

3 
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)()( xgxf )(')()()(' xgxfxgxf  xx ln3  x
xxx 132 ln3 

))(( xgf )('))((' xgxgf 72 )35(  xx )52()35(7 62  xxx

)(xfe )(')( xfe xf 352  xxe )52(352
 xe xx

)(ln xf
)(
)('

xf
xf

)35ln( 2  xx 35
52

2 

xx
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REVIEW OF THE PRODUCT RULE

We will briefly review the product rule, mostly by looking at an example which 
helps explain it, which states that

dx
dg

dx
df

dx
d xfxgxgxfxgxfxgxf )()()(')()()(')]()([  .

Recall that 
x
f

dx
df

in change
in change .  See Notes 2 through 4.

Consider the following example.  At Disneyland (as well as most any other business 
that sells tickets), the revenue due to ticket sales is simply the product of the number of 
tickets sold and the price per ticket.  For simplicity, we will assume there is one single 
ticket price.  So we have )()()( tctntr   where

)(tr   is the revenue (in dollars per year)

)(tn   is the number of tickets sold (in tickets per year)

)(tc   is the cost per ticket (in dollars per ticket)

Suppose that in 2006, a total of 1,570,000 tickets were sold at a cost of $45 per 
ticket. That is, 

year

 tickets000,570,1
)2006( n    and   

ticket

45$
)2006( c

so that 

000,650,70$
ticket

45$

year

 tickets000,570,1
)2006()2006()2006(  cnr  per year

Notice that the “tickets” units cancel out to leave us with units of “$ / year.”

There are two ways for revenue to increase: raise ticket prices and/or sell more 
tickets.  Suppose that from 2006 to 2007 Disneyland increased the number of 
tickets it sold by 50,000.  Then the increase in revenue from 2006 to 2007 due to 
an increase in the number of tickets sold would be 

000,250,2$
ticket

45$
 tickets000,50  .

If this increase in tickets were a yearly event, so the increase in number of tickets 
sold were 50,000 tickets per year, then the increase in revenue per year would be 

yearper000,250,2$
ticket

45$

year

 tickets000,50




Similarly, suppose that at the current 1,570,000 of tickets sold per year, the ticket 
price is increasing at $1 per ticket per year.  Then the revenue increase per year 
due to an increase in ticket price is 

yearper 000,570,1$
year

$1/ticket
 tickets000,570,1  .

So the total change in revenue (due to selling 50,000 more tickets plus raising the 
ticket price by $1) per year is 

year

$1/ticket
 tickets000,570,1        

ticket

45$

year

 tickets000,50


                 =       yearper 000,570,1$    year   per 000,250,2$  .

So where 

year

 tickets000,50)2006( 
dt

dn
   and     

year

ticket/1$)2006( 
dt

dc
,

the rate of increase in annual revenue 
dt
dr  from 2006 to 2007 is 

dt
dc

dt
dn

dt
dr nc )2006()2006()2006( )2006(    )2006(    

In general, the product rule says that

dt
tdc

dt
tdn

dt
tdr

tntc
)()()(

)()(  ,

which can also be written,

)(')()()(')(' tctntctntr 
that is,

)(')()()(')]'()([ tctntctntctn  .

Using the more familiar notation of )(xf  and )(xg  we have

)(')()()(')]'()([ xgxfxgxfxgxf 

or

dx
xdg

dx
xdf

dx
d xfxgxgxf

)()(
)()()]()([ 

.



REVIEW OF THE CHAIN RULE

We will briefly review the quotient rule, mostly by looking at an example which 
helps explain it. 

First, suppose you own a factory that produces toasters.  The more employees you 
hire, the more toasters you produce (of course your employees do all the work—
you just sit in your office counting the money as it pours in), and the more toasters 
you produce, the most money you make.  So the amount of money you make is a 
function of the number of toasters you produce, which is a function of how many 
employees you hire, then the amount of money you make is a function of how 
many employees you hire.  

If you make $5 for each additional toaster you produce, and you get 3 additional 
toasters for each additional employee, then you make $15 for each additional 
employee.  Let’s write this out in mathematical notation.  Let

  M = the amount of money made
T = the number of toasters produced

  E = the number of employees working for you
Then “each you make $5 for each additional toaster you produce” can be written

 toaster1

5$

 toastersofnumber in change

moneyofamount in change





T

M
  

and  “you get 3 additional toasters for each additional employee” can be written  

employee1

 toasters3

employeesofnumber in change

 toastersofnumber in change





E

T
. 

which means that

employeesofnumber in change

 toastersofnumber in change

 toastersofnumber in change

moneyofamount in change

employeesofnumber in change

moneyofamount in change


can be written

employee1

15$

employee1

 toasters3

 toaster1

5$













E

T

T

M

E

M
,

that is, “you make $15 for each additional employee.”  

In general, if we have some quantity f  that is a function of some other quantity 
g , that is, )(gff  , and if g  is a function of some quantity x , that is, )(xgg  , 
then f  is really a function of x , since ))(()( xgfgff  .  In other words, the 
value of x  will determine (the value of g  which will determine) the value of f .  
So if you change the value of x , you will change the value of f , so f  is a 
function of x .  (Sorry this is a bit redundant—I want to make sure this is clear.)  
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since )(xgg  , that is, g  is a function of x .

For example, if 3)( ggf   and 15)( 2  xxxg , then 23g
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One more example.  If gegf )(  and xxxg  4)( , then g
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In general, )(')()( xgee xgxg
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FINDING THE DERIVATIVE “WITH RESPECT TO…”

dx
d  means “find the derivative with respect to x  of …”  For example, 

52)35( 2  xxx
dx
d .  In general, 
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xdf

dx
d xf

)(
)(  .

The “with respect to x ” part is important.  It means think of x  as the variable and 
anything else—in particular, other letters—as constants.  For example, just as

xxx
dx
d 10255 2  ,

then where a  is a constant we have

axxaax
dx
d 222  ,

We can also use letters other than x  as the variable.  (Of course we can—
otherwise it would be blatant case of variable bias, which in our modern society is 
quite illegal, not to mention just plain wrong!)  Suppose b  were instead the 
variable.  Then we would have

abbaab
db
d 222  .

In this example, 
db
d  means “take the derivative with respect to b  of … ,” in which 

case we think of b  as the variable and think of everything else as a constant.  Here 
are some other examples.

In finding
Think of ____ 

as the variable

Think of ____ 

as constants
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222232 33 cabcabcab
dc
d  c a , b



A FEW MORE EXAMPLES

Let a , b  and c  are constants.
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BRIEF REVIEW OF HOW TO FIND A MINIMUM OR MAXIMUM OF A FUNCTIOn.

While we will not give a complete discussion here of how to use first and second 
derivatives to find the minima and maxima (minimums and maximums, if you 
prefer) of a function, we will give a brief summary.  If a function has a relative 
minimum or maximum at a certain value ax  , then is must be that 0)(' af .  
However, 0)(' af  does not guarantee that )(xf  has a minimum or maximum at 

ax  .  If 0)(' af , then the value of the second derivative at )('' af  tells us 
whether )(xf  has a minimum or maximum at ax  .  We give a bit more detail.

In general, the derivative of )(xf  tells us whether )(xf  is decreasing, increasing 
or neither:

If )(' xf then )(xf  is
0 decreasing
0 not changing
0 increasing

Similarly, the derivative of )(' xf  (in other words, )('' xf ) tells us whether )(' xf
is decreasing, increasing or neither:

If )('' xf then )(' xf  is
0 decreasing
0 not changing
0 increasing

Suppose we know a function has a minimum or maximum at a certain value ax  .  
The function will have a minimum at ax   if the slope of the function (not the 
function itself) is increasing at ax  .  Similarly, the function will have a 
maximum at ax   if the slope of the function (not the function itself) is 
decreasing at ax  .  To summarize, if 0)(' af , then

if )('' af then )(' af  is and at ax  , )(xf  has a  
0 decreasing maximum
0 not changing (don’t know)
0 increasing minimum



 Consider the function 35 53)( xxxf  , which has four critical points, that is, 
points at which 0)(' xf :  

)1)(1(15)1(151515)(' 22224  xxxxxxxxf ,
so 

0)(' xf  at 0x , 1x  and 1x .
(The critical point 0x  counts as two of the four critical points.)                         

Since xxxf 3060)('' 3  , then 030)1('' f , which means f has a relative 
maximum at 1x .  Similarly, 060)1('' f , which means f  has a relative 
minimum at 1x .  Since 0)0('' f , we can’t tell just from this information 
whether at 0x the function has a minimum, maximum or neither (it turns out it 
has neither, as you can see in the figure).  As you see in the graph, the values of 
the function at these three points are 2)1( f , 0)0( f  and 2)1( f .


