Diﬁerenti‘ation Rules

We have seen how to interpret derivatives as slopes and rates of change. We
have seen how to estimate derivatives of functions given by tables of values. We
have learned how to graph derivatives of functions that are defined graphically.
We have used the definition of a derivative to calculate the derivatives of func-
tions defined by formulas. But it would be tedious if we always had to use the
definition, so in this chapter we develop rules for finding derivatives without
having to use the definition directly. These differentiation rules enable us to
calculate with relative ease the derivatives of polynomials, rational functions,
algebraic functions, exponential and logarithmic functions, and trigonometric and
inverse trigonometric functions. We then use these rules to solve problems
involving rates of change, tangents to parametric curves, and the approximation
of functions.
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mDerivatives of Polynomials and Exponential Functions

)I
c y=c
slope =0
0
FIGURE 1

The graph of f(x) = cis the
line y = ¢, so f'(x) = 0.

¥
y=x
slope =1
0
FIGURE 2

The graph of f(x)= x is the
line y = x, so f/(x) = 1.

In this section we learn how to differentiate constant functions, power functions, polyno-
mials, and exponential functions.

Let’s start with the simplest of all functions, the constant function f(x) = ¢. The graph
of this function is the horizontal line y = ¢, which has slope 0, so we must have f(x) =0.
(See Figure 1.) A formal proof, from the definition of a derivative, is also easy:

f(x”;l)_f(x):nmC;C:nmo:o

h—0 h—0

J'() = lim

In Leibniz notation, we write this rule as follows.

Derivative of a Constant Function

Power Functions

We next look at the functions f(x) = x”, where n is a positive integer. If n = 1, the graph
of f(x) = x is the line y = x, which has slope 1. (See Figure 2.) So

m %(x)=l

(You can also verify Equation 1 from the definition of a derivative.) We have already
investigated the cases n = 2 and n = 3. In fact, in Section 2.7 (Exercises 17 and 18) we
found that '

d , d
&= =72 — (x%) = 3x2
@ dx =) o dx ) =

For n = 4 we find the derivative of f(x) = x* as follows:

S+ h) —fx) - (x + n)* — x*

h—0

J'(x) = lim

B x*+ 4x3h + 6x%h? + 4xh® + Bt — x4
= lim
h—0 h

4xh + 6x°h* + 4xh> + h?

= lm

h—0 h
= ’Iirr(l) (4x* + 6x°h + 4xh* + h*) = 4x°

Thus

|___3__| % (x*) = 4x3



The Binomial Theorem is given on
Reference Page 1.
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Comparing the equations in (1), (2), and (3), we see a pattern emerging. It seems to be a
reasonable guess that, when n is a positive integer, (d/dx)(x") = nx""'. This turns out to
be true.

The Power Rule If n is a positive integer, then

d ny —— n—1
- (x") = nx

PROOF If f(x) = x", then

Fa W =@ Gy =
h hl—lg h

f'(x) = lim

In finding the derivative of x* we had to expand (x + h)*. Here we need to expand
(x + h)" and we use the Binomial Theorem to do so:

n(n — 1
x" + nx""'h + %xn*ZhZ s 5 eyt L o h,,:l —_
['(x) = lim p
nn — 1
nx" 'h + _L_Z_)xn*ZhZ Y, Lk Ay

= lim

h—0 h

. _ nn—1) _
= lim [nx” b+ —L——)x" o+ -+ nxh"? + h""‘}

h—0 2
e nxn—l

because every term except the first has % as a factor and therefore approaches 0. —

We illustrate the Power Rule using various notations in Example 1.

EXAMPLE 1 Using the Power Rule

(a) If f(x) = x5, then f'(x) = 6x°. (b) If y = x'%, then y’ = 1000x°.
dy d
_ 4 — 443 3\ 2.2
(c) If y = t*, then ” 4z, (d) o (r’) = 3r

What about power functions with negative integer exponents? In Exercise 59 we ask
you to verify from the definition of a derivative that

We can rewrite this equation as

d 1
1) = ()2
T ™)} =(~D=
and so the Power Rule is true when n = —1. In fact, we will show in the next section

[Exercise 60(c)] that it holds for all negative integers.
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Figure 3 shows the function y in Example 2(b)
and its derivative y’. Notice that y is not differ-
entiable at 0 (y’ is not defined there). Observe
that y’ is positive when y increases and is neg-
ative when y decreases.

2
y !
y
=3 3
=2
FIGURE 3
y=3x*
3
\\ tangent
Y
\@1
! ~—13
- :i,,ﬁ s .
FIGURE 4

y=xJx

What if the exponent is a fraction? In Example 4 in Section 2.7 we found that

d \/— 1

S ol

dx 2./x
which can be written as
d 1

22y = Ly

dx (x ) 2
This shows that the Power Rule is true even when n = % In fact, we will show in Sec-
tion 3.7 that it is true for all real numbers 7.

The Power Rule (General Version) If n is any real nuniber, then

d
_[E (xn) _— nxn—l

EXAMIPLE2 The Power Rule for negative and fractional exponents  Differentiate:

1
@ f)=—3 ) y = Ix*
SOLUTION In each case we rewrite the function as a power of x.
(a) Since f(x) = x~2, we use the Power Rule with n = —2:
d 5 2
l =2 (x )= -2 = —x = =2
J'(x) e (x7%) X X e
® D _ L ()= L omy = gxom 5 -
b

dx dx

The Power Rule enables us to find tangent lines without having to resort to the defi-
nition of a derivative. It also enables us to find normal lines. The normal line to a curve C
at a point P is the line through P that is perpendicular to the tangent line at P. (In the study
of optics, one needs to consider the angle between a light ray and the normal line to a lens.)

I EXAMPLE3 Find equations of the tangent line and normal line to the curve y = x\/;
at the point (1, 1). Illustrate by graphing the curve and these lines.

SOLUTION The derivative of £(x) = x+/x = xx'/? = x*?is
' — 3
F0) = 4201 =100 =15

So the slope of the tangent line at (1, 1) is f'(1) = 2. Therefore an equation of the tan-
gent line is

-

y=1=3x=1 o y=jx-

The normal line is perpendicular to the tangent line, so its slope is the negative recipro-
cal of 3, that s, —2 Thus an equation of the normal line is

y—l==3x~-1 o y=-fx+3

We graph the curve and its tangent line and normal line in Figure 4. B



GEOMETRIC INTERPRETATION OF
THE CONSTANT MULTIPLE RULE

//\ y=2f(x)
y=f(x)

=

Y

Multiplying by ¢ = 2 stretches the graph verti-

cally by a factor of 2. All the rises have been
doubled but the runs stay the same. So the
slopes are doubled, too.

Using prime notation, we can write the
Sum Rule as

g =%y
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New Derivatives from Old

When new functions are formed from old functions by addition, subtraction, or multipli-
cation by a constant, their derivatives can be calculated in terms of derivatives of the old
functions. In particular, the following formula says that the derivative of a constant times
a function is the constant times the derivative of the function.

The Constant Multiple Rule If ¢ is a constant and f is a differentiable function, then

e = e 1)

PROOF Let g(x) = cf(x). Then

olrt ) ~g() _ . of Gt ) - ef ()

g (x) - I%l—IE(l) h : ;{Lo h
o [f(x+h) —f(X)]
=lmc|——""—"7—"""
h—0 h
+ i
= ¢ lim w (by Law 3 of limits)
h—0 h
= cf'(x) —

EXAMPLE 4 Using the Constant Multiple Rule

d d
(@) — (3x*) =3 — (x*) = 3(4x°) = 12x°

dx dx

d d d '
®) 7= () = - [ = (- D) —— @) = ~1(1) = -1

The next rule tells us that the derivative of a sum of functions is the sum of the
derivatives.

The Sum Rule If fand g are both differentiable, then

L) + 9] = - 1) + - gt

PROOF Let F(x) = f(x) + g(x). Then
F(x + h) — F(x)

Fioey = Tim h
i LG ) g+ W] =[£G + 9]
s h
:Pn%[ﬂx 5, gt B2 g(x)]

i LEFN S gt D)

h—0 h h—0 h,

=f'(x) +g'(x) =l



178 CHAPTER 3  DIFFERENTIATION RULES

0,4)

e

A

(—V/3,-5) (v3,-5)

FIGURE 5
The curve y = x* — 6x*+ 4 and
its horizontal tangents

The Sum Rule can be extended to the sum of any number of functions. For instance,
using this theorem twice, we get

(frg+h =[(f+rg+hl'=(+g +h=f+g +N

By writing f — g as f + (—1)g and applying the Sum Rule and the Constant Multiple
Rule, we get the following formula.

The Difference Rule If fand g are both differentiable, then

2 [0 - g = - 7G) = - 9

The Constant Multiple Rule, the Sum Rule, and the Difference Rule can be combined
with the Power Rule to differentiate any polynomial, as the following examples demonstrate.

EXAMPLE 5 Differentiating a polynomial
d 8 5| 4 3
— (x® + 12x° — 4x* + 10x° — 6x + 5)
dx
=—( )+ 12— (xs) - 4—(x4) + 10— (x?) - 6— (x) + —(5)

= 8x” + 12(5x*) — 4(4x*) + 10(3x*) — 6(1) + 0

= 8x7 + 60x* — 16x> + 30x> — 6

I EXAMPLEG Find the points on the curve y = x* — 6x* + 4 where the tangent line is
horizontal.

SOLUTION Horizontal tangents occur where the derivative is zero. We have
dy _d .,
— = —6— () +—@
DL -6 )+ @)
=4x* — 12x + 0 = 4x(x* — 3)
Thus dy/dx = 0if x = 0 or x*> — 3 = 0, that is, x = +\/_ 3. So the given curve has
horizontal tangents when x = 0, ﬁ and f 3. The corresponding points are (0, 4)

(\/5, 5) and( V3, - ) (See Figure 5.)
EXAMPLE 7 The equation of motion of a particle is s = 2¢* — 5t 4+ 3¢ + 4, where s is

measured in centimeters and 7 in seconds. Find the acceleration as a function of time.
What is the acceleration after 2 seconds?

SOLUTION The velocity and acceleration are
ds
=—=06—10t+3
o)) = —
dv’
t)=—=121— 10
alt) = —

The acceleration after 2 s is a(2) = 14 cm/s%



" ¥ =1 3 -1

h h
0.1 0.7177 1.1612
0.01 0.6956 1.1047
0.001 0.6934 1.0992
0.0001 0.6932 1.0987
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Exponential Functions

Let’s try to compute the derivative of the exponential function f(x) = a* using the defini-
tion of a derivative:

I 4 € O B A O I
A L
) axah _ ax ) ax(ah _ l)
= lim = lim
h—0 h h—0 h

The factor a* doesn’t depend on £, so we can take it in front of the limit:

a—1
h

[ = a*lim

Notice that the limit is the value of the derivative of f at 0, that is,

h
_
lim <
h

im = f(0)

Therefore we have shown that if the exponential function f(x) = a* is differentiable at 0,

. then it is differentiable everywhere and

[4] f'(x) = f(0)a*

This equation says that the rate of change of any exponential function is proportional to
the function itself. (The slope is proportional to the height.)

Numerical evidence for the existence of f'(0) is given in the table at the left for the
cases a = 2 and a = 3. (Values are stated correct to four decimal places.) It appears that
the limits exist and

2 1
fora=2, f(0)= ’llirr(l) ~ (.69

h

1
=~ 1.10

3
fora =3, [f'(0)= ]hné

In fact, it can be proved that these limits exist and, correct to six decimal places, the val-
ues are

d d
2 029 =0.693147 269 ~1.098612
dx dx x=0

x=0

Thus, from Equation 4, we have
d d
[5] — (2%) = (0.69)2* — (3*) = (1.10)3*
dx dx

Of all possible choices for the base a in Equation 4, the simplest differentiation formula
occurs when f'(0) = 1. In view of the estimates of f'(0) fora = 2 and a = 3, it seems rea-
sonable that there is a number a between 2 and 3 for which f'(0) = 1. It is traditional to
denote this value by the letter e. (In fact, that is how we introduced e in Section 1.5.) Thus
we have the following definition.
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In Exercise 1 we will see that e lies between
2.7 and 2.8. Later we will be able to show that,
correct to five decimal places,

e~ 271828

Visual 3.1 uses the slope-a-scope to
illustrate this formula.

=5

FIGURE 8

1.5

Definition of the Number e

e — 1

e is the number such that lim =1

h—0

Geometrically, this means that of all the possible exponential functions y = a*, the
function f(x) = e*is the one whose tangent line at (0, 1) has a slope f”(0) that is exactly 1.
(See Figures 6 and 7.)

¥

1
/ y=e'

0 x 0 X

FIGURE 6 FIGURE 7

If we put a = e and, therefore, f'(0) = 1 in Equation 4, it becomes the following impor-
tant differentiation formula.

Derivative of the Natural Exponential Function

L () =e

dx

Thus the exponential function f(x) = e* has the property that it is its own derivative.
The geometrical significance of this fact is that the slope of a tangent line to the curve
y = e* is equal to the y-coordinate of the point (see Figure 7).

W EXAMPLES If f(x) = e* — x, find f' and f”. Compare the graphs of f and f".

SOLUTION Using the Difference Rule, we have
d d d
1 g x s =2 Q. G S Lo 1
fR=— ()=l - =e
In Section 2.7 we defined the second derivative as the derivative of f’, so
d d d
£rn — X 1 e A X — 1 T X
F) =l = =) - () =

The function f and its derivative /" are graphed in Figure 8. Notice that f has a horizon-
tal tangent when x = 0 this corresponds to the fact that f'(0) = 0. Notice also that,

for x > 0, f'(x) is positive and f is increasing. When x < 0, f”(x) is negative and f is
decreasing. B
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line y = 2x?

FIGURE 9

Therefore the required point is (a, e*) = (In 2, 2). (See Figure 9.)
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EXAMPLE9 At what point on the curve y = e” is the tangent line parallel to the

SOLUTION Since y = ¢*, we have y' = e”. Let the x-coordinate of the point in question
be a. Then the slope of the tangent line at that point is e®. This tangent line will be paral-
lel to the line y = 2x if it has the same slope, that is, 2. Equating slopes, we get

e"=2 > a=1n2

m Exercises

1. (a) How is the number e defined?
(b) Use a calculator to estimate the values of the limits

2.7" — 1 28" =1
e — lim——————

and h—0 h

lim
h—0

correct to two decimal places. What can you conclude
about the value of ¢? '

2. (a) Sketch, by hand, the graph of the function f(x) = e*, pay-

ing particular attention to how the graph crosses the y-axis.

What fact allows you to do this?

(b) What types of functions are f(x) = e* and g(x) = x°?
Compare the differentiation formulas for f and g.

(c) Which of the two functions in part (b) grows more rapidly
when x is large?

3-26 Differentiate the function.

3. f(x) = 186.5 4. f(x) = /30
5. f(t) =2 — %t 6. F(x) =3x°

7. f(x) =x*—4x + 6 8. f(1) =55 — 3t + ¢

2. u=3t +4J85

A
25, ; =— + Be’
y

2. p= (ﬁ + %)2

26. y=¢e"*' + 1

27-28 Find an equation of the tangent line to the curve at the given
point.

2. y = ¥Yx, (1,1) 28. y = x* + 2x% — x,

(1,2)

29-30 Find equations of the tangent line and normal line to the
curve at the given point.

29, y = x' + 2¢%, (0,2) 30. y=(1+2x% (1,9

31-32 Find an equation of the tangent line to the curve at the given
point. Tllustrate by graphing the curve and the tangent line on the
same screen.

3. y=3x2—x (1,2 32. y=x—+x, (1,0)

9. f(r) = +(t* + 8) 10. h(x) = (x — 2)(2x + 3)
12 R 33-36 Find f'(x). Compare the graphs of f and f' and use them to
n. As) = e 12. B(y) = cy explain why your answer is reasonable.
13. g(r) = 2t7¥ 14. h(t) = ¥t — 4e' 33. f(x) =e* — 5x 34. f(x) = 3x° — 20x® + 50x
4 1
15, y = 3" + — 16. y = /x (x — 1) 35, f(x) =3x" — 5%+ 3 3. f(x) =x+ —
% x
x?—3x - 1
17. F(x) = (3x)° T ) ===
) 37-38 Estimate the value of f'(a) by zooming in on the graph of f.
19. y= e 20. g(u) = V2 u + 3u Tl}en differen‘tiate f to find the exact value of f'(a) and compare
\/; with your estimate.
2N, y = da? 2 y=a+ 245 I f) =3, a=1 3 f(x)=1/x a=4
v
;‘E Graphing calculator or computer with graphing software required 1. Homework Hints available in TEC
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39. (a) Use a graphing calculator or computer to graph the func- 54.

tion f(x) = x* — 3x® — 6x? + 7x + 30 in the viewing
rectangle [ —3, 5] by [—10, 50].
(b) Using the graph in part (a) to estimate slopes, make 55
a rough sketch, by hand, of the graph of f'. (See
Example 1 in Section 2.7.)

(c) Calculate f'(x) and use this expression, with a graphing 56.

device, to graph f'. Compare with your sketch in part (b).

40. (a) Use a graphing calculator or computer to graph the func-

tion g(x) = e* — 3x? in the viewing rectangle [—1, 4] 517.

by [—8, 8].
(b) Using the graph in part (a) to estimate slopes, make

a rough sketch, by hand, of the graph of g’. (See

Example 1 in Section 2.7.) 58
(c) Calculate g'(x) and use this expression, with a graphing

device, to graph g'. Compare with your sketch in part (b).

41-42 Find the first and second derivatives of the function.

59,
41, f(x) = 10x"° + 5x° — x 2.6 =+r +Ir
4344 Find the first and second derivatives of the function. 60.
Check to see that your answers are reasonable by comparing the
graphs of f, f', and f".
43, f(x) = 2x — 5x%*. M. f(x) =e*—x3 o,
. . . s 62.
45. The equation of motion of a particle is s = t* — 3¢, where s
is in meters and ¢ is in seconds. Find
(a) the velocity and acceleration as functions of ¢,
(b) the acceleration after 2 s, and
(¢) the acceleration when the velocity is 0.
63.
46. The equation of motion of a particle is
s = 1" — 217 + t* — ¢, where s is in meters and ¢ is in
seconds.
(a) Find the velocity and acceleration as functions of 7.
(b) Find the acceleration after 1 s.
A (¢) Graph the position, velocity, and acceleration functions
on the same screen.
64.
47. On what interval is the function f(x) = 5x — e* increasing?
48. On what interval is the function f(x) = x* — 4x* + 5x
concave upward? 65.
49. Find the points on the curve y = 2x* + 3x? — 12x + 1
where the tangent is horizontal. 66.
50. For what values of x does the graph of
f(x) = x> + 3x* + x + 3 have a horizontal tangent?
51. Show that the curve y = 6x” + 5x — 3 has no tangent line 67
with slope 4.
52. Find an equation of the tangent line to the curve y = x\/; 68.
that is parallel to the line y = 1 + 3x.
53. Find equations of both lines that are tangent to the curve 69.

y = 1 + x? and parallel to the line 12x — y = 1.

s
At what point on the curve y = 1 + 2¢* — 3x is the tangent

line parallel to the line 3x — y = 57 Illustrate by graphing
the curve and both lines.

. Find an equation of the normal line to the parabola

y = x*> — 5x + 4 that is parallel to the line x — 3y = 5.

Where does the normal line to the parabola y = x — x> at the
point (1, 0) intersect the parabola a second time? Illustrate
with a sketch.

Draw a diagram to show that there are two tangent lines to
the parabola y = x? that pass through the point (0, —4). Find
the coordinates of the points where these tangent lines inter-
sect the parabola.

. (a) Find equations of both lines through the point (2, —3)

that are tangent to the parabola y = x* + x.
(b) Show that there is no line through the point (2, 7) that is
tangent to the parabola. Then draw a diagram to see why.

Use the definition of a derivative to show that if f(x) = 1/x,
then f'(x) = —1/x2 (This proves the Power Rule for the
case n = —1.)

Find the nth derivative of each function by calculating the
first few derivatives and observing the pattern that occurs.

@ f(x) =x" (b) f(x) =1/x

Find a second-degree polynomial P such that P(2) = 5,
P'(2) = 3,and P"(2) = 2.

The equation y” + y' — 2y = x” is called a differential
equation because it involves an unknown function y and its
derivatives y' and y”. Find constants A, B, and C such that the
function y = Ax* + Bx + C satisfies this equation. (Differ-
ential equations will be studied in detail in Chapter 7.)

(a) In Section 2.8 we defined an antiderivative of f to be a
function F such that F'= f. Try to guess a formula for an
antiderivative of f(x) = x Then check your answer by
differentiating it. How many antiderivatives does f have?

(b) Find antiderivatives for f(x) = x*and f(x) = x*.

(c) Find an antiderivative for f(x) = x", where n # —1.
Check by differentiation.

Use the result of Exercise 63(c) to find an antiderivative of
each function.

@ f(x) = Vx (b) f(x) = e* + 8x°

Find the parabola with equation y = ax® + bx whose tangent
line at (1, 1) has equation y = 3x — 2.

Suppose the curve y = x* + ax® + bx® + cx + d has a tan-
gent line when x = 0 with equation y = 2x + 1 and a
tangent line when x = 1 with equation y = 2 — 3x. Find the
values of a, b, ¢, and d.

. Find a cubic function y = ax® + bx*> + cx + d whose graph

has horizontal tangents at the points (—2, 6) and (2, 0).

Find the value of ¢ such that the line y = 3x + 6 is tangent to
the curve y = c/x.

For what values of @ and b is the line 2x + y = b tangent to
the parabola y = ax® when x = 27



70.

71.

m The Product and Quotient Rules

A tangent line is drawn to the hyperbola xy = ¢ at a point P.

(a) Show that the midpoint of the line segment cut from this
tangent line by the coordinate axes is P.

(b) Show that the triangle formed by the tangent line and the
coordinate axes always has the same area, no matter
where P is located on the hyperbola.

1000 __ 1

72.

13.

4.
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Draw a diagram showing two perpendicular lines that inter-
sect on the y-axis and are both tangent to the parabola
y = x% Where do these lines intersect?

If ¢ > %, how many lines through the point (0, ¢) are normal
lines to the parabola y = x>? What if ¢ < 3?

Sketch the parabolas y = x*and y = x* — 2x + 2. Do you

Evaluate lim
x—1

think there is a line that is tangent to both curves? If so, find
its equation. If not, why not?

Building a Better Roller Coaster

Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying
photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope
of the drop — 1.6. You decide to connect these two straight stretches y = L(x) and y = L,(x) with
part of a parabola y = f(x) = ax® + bx + ¢, where x and f(x) are measured in feet. For the track
to be smooth there can’t be abrupt changes in direction, so you want the linear segments L, and L,
to be tangent to the parabola at the transition points P and Q. (See the figure.) To simplify the
equations, you decide to place the origin at P.

1. (a) Suppose the horizontal distance between P and Q is 100 ft. Write equations in a, b,
" and ¢ that will ensure that the track is smooth at the transition points.
(b) Solve the equations in part (a) for «, b, and ¢ to find a formula for f(x).
(c) Plot Ly, f, and L, to verify graphically that the transitions are smooth.
(d) Find the difference in elevation between P and Q.

Y,
K]

2. The solution in Problem 1 might look smooth, but it might not feel smooth because the
piecewise defined function [consisting of L;(x) for x < 0, f(x) for 0 < x = 100, and
Lo(x) for x > 100] doesn’t have a continuous second derivative. So you decide to improve
the design by using a quadratic function ¢(x) = ax* + bx + ¢ only on the interval
10 = x = 90 and connecting it to the linear functions by means of two cubic functions:

g(x) = kx* + Ix* + mx + n 0<x<10
h(x) =px* + g+ rx+s 90 <x <100
(a) Write a system of equatjons in 11 unknowns that ensure that the functions and their
first two derivatives agree at the transition points.

[CAS]  (b) Solve the equations in part (a) with a computer algebra system to find formulas for

‘¢(x), g(x), and h(x).
(c) Plot Ly, g, ¢, h, and L,, and compare with the plot in Problem 1(c).

Graphing calculator or computer with graphing software required

[cAs] Computer algebra system required

The formulas of this section enable us to differentiate new functions formed from old func-
tions by multiplication or division.

The Product Rule

[@ By analogy with the Sum and Difference Rules, one might be tempted to guess, as Leibniz

did three centuries ago, that the derivative of a product is the product of the derivatives. We
can see, however, that this guess is wrong by looking at a particular example. Let f(x) = x
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Av b uldv AuAv
v uv VAU
u Au
FIGURE 1

The geometry of the Product Rule

Recall that in Leibniz notation the definition of

a derivative can be written as

dy .. Ay
dx _Aligo Ax

In prime notation:

(f9) =fg' + gf’

and g(x) = x?. Then the Power Rule gives f'(x) = 1 and ¢'(x) = 2x. But (fg)(x) = x°, so
(fg)'(x) = 3x* Thus (fg)" # f'g’. The correct formula was discovered by Leibniz (soon
after his false start) and is called the Product Rule.

Before stating the Product Rule, let’s see how we might discover it. We start by assum-
ing that u = f(x) and » = g(x) are both positive differentiable functions. Then we can
interpret the product uv as an area of a rectangle (see Figure 1). If x changes by an amount
Ax, then the corresponding changes in u and v are

Au = f(x + Ax) — f(x) Av = g(x + Ax) — g(x)

and the new value of the product, (u + Au)(v + Av), can be interpreted as the area of the
large rectangle in Figure 1 (provided that Au and Av happen to be positive).
The change in the area of the rectangle is

E] Awv) = (u + Au)(v + Av) — uv = u Av + v Au + Au Av
= the sum of the three shaded areas

If we divide by Ax, we get

A(uv) _ Av Au Av
Ax “ Ax v Ax " Ax

If we now let Ax — 0, we get the derivative of uv:

A A A
—d—(uv)= lim —(—bﬂ)—)—= lim <u—v+ v—éi-i- Au—v>
dx X

Ax—0 Ax Ax—0

—utim 22y gim 2t (tim A ) im 22
_umn—r}o Ax vAir—{lo Ax Aigo " AiTO Ax

dv P du +0 dv

A a0

Yo TV ax dx
[2] —‘-i—(l,t1))=btfl14-1)ﬂ
dx dx dx

(Notice that Au — 0 as Ax — 0 since f is differentiable and therefore continuous.)

Although we started by assuming (for the geometric interpretation) that all the quanti-
ties are positive, we notice that Equation 1 is always true. (The algebra is valid whether u,
v, Au, and Av are positive or negative.) So we have proved Equation 2, known as the
Product Rule, for all differentiable functions u and .

The Product Rule If f and g are both differentiable, then

1 F09() = 1) - [g(a)] + 9(a) 5L/

In words, the Product Rule says that the derivative of a product of two functions is the
first function times the derivative of the second function plus the second function times the
derivative of the first function.
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EXAMPLE 1 Using the Product Rule
(a) If f(x) = xe*, find f'(x).
(b) Find the nth derivative, f®(x).

SOLUTION
Figure 2 shows the graphs of the function f (a) By the Product Rule, we have
of Example 1 and its derivative f'. Notice that d
/(x) is positive when f is increasing and nega- / _ 4 %
]tcive when f is decreasing. S dx (xe”)
3 d o d
— = x— ex + e,\___ X
dx (e”) dx ()
=xe*+e* 1= (x+ 1)e*
y f (b) Using the Product Rule a second time, we get
=3 1.5
L ’ £ = L [(x + e
x)=—]|(x e
sl dx
FIGURE 2 d d
=x+1)—(E)ter—kx+1
(+ D))+ et (et 1)
=(x+1e*+e* 1= (x+2)e"
Further applications of the Product Rule give
F o) =1a+t 3 FO%) = (x + 4)e*
In fact, each successive differentiation adds another term e”, so
FOx) = (x + n)e* 4 o
In Example 2, a and b are constants. It is EXAMPLE 2 Differentiating a function with arbitrary constants

customary in mathematics to use letters near Differentiate the function f(t) - \/t_ (a + bt).
the beginning of the alphabet to represent con-

stants and letters near the end of the alphabet SOLUTION 1 Using the Product Rule, we have
to represent variables.

f@ = %(aert) +(a+bt)%(\/}_)
= Vi b+ (a+bo) g

a + bt a + 3bt

BRI W ¥

SOLUTION 2 If we first use the laws of exponents to rewrite f(z), then we can proceed
directly without using the Product Rule.

f(t) = a\/; + bt\/; = qt'? + bt3/2

i) = tar™* + 212

which is equivalent to the answer given in Solution 1. GEE

Example 2 shows that it is sometimes easier to simplify a product of functions before
differentiating than to use the Product Rule. In Example 1, however, the Product Rule is
the only possible method.
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EXAMPLE 3. If f(x) = v/x g(x), where g(4) = 2 and ¢'(4) = 3, find f'(4),
SOLUTION Applying the Product Rule, we get

716 = VR o] = V% L[] + g0 - 5]

So @) = VAg4) + g(_“\/% ~2.3+-2 g5 .

1 EXAMPLE 4 Interpreting the terms in the Product Rule A telephone company wants to
estimate the number of new residential phone lines that it will need to install during the
upcoming month. At the beginning of J anuary the company had 100,000 subscribers,
each of whom had 1.2 phone lines, on average. The company estimated that its sub-
scribership was increasing at the rate of 1000 monthly. By polling its existing sub-
scribers, the company found that each intended to install an average of 0.01 new phone
lines by the end of January. Estimate the number of new lines the company will have to
install in January by calculating the rate of increase of lines at the beginning of the
month.

SOLUTION Let s(r) be the number of subscribers and let n(z) Be the number of phone lines
per subscriber at time 7, where ¢ is measured in months and ¢ = 0 corresponds to the
beginning of January. Then the total number of lines is given by

L(t) = s@)n(?)

and we want to find L'(0). According to the Product Rule, we have
d d d
L) = — = i + —
(0) =~ [s(t)n(®)] = s() 7, 10+ n(0) 250

We are given that s(0) = 100,000 and n(0) = 1.2. The company’s estimates concerning
rates of increase are that s'(0) =~ 1000 and n'(0) =~ 0.01. Therefore

L'(0) = 5(0)n'(0) + n(0)s'(0)
=~ 100,000 - 0.01 + 1.2 - 1000 = 2200

The company will need to install approximately 2200 new phone lines in J anuary.

Notice that the two terms arising from the Product Rule come from different sources—
old subscribers and new subscribers. One contribution to L' is the number of existing sub-
scribers (100,000) times the rate at which they order new lines (about 0.01 per subscriber
monthly). A second contribution is the average number of lines per subscriber (1.2 at the
beginning of the month) times the rate of increase of subscribers (1000 monthly).

The Quotient Rule

We find a rule for differentiating the quotient of two differentiable functions 1 = Jf(x) and
v = g(x) in much the same way that we found the Product Rule. If x, u, and v change by
amounts Ax, Au, and A, then the corresponding change in the quotient /v is

A% ut+Au uw (u+ Au) — uly + Av) _ vAu— ulv
v+ Av v v(v + Av) v(v + Av)



In prime notation:

(i)' _9'—fq

g g9’

We can use a graphing device to check that
the answer to Example 5 is plausible. Figure 3
shows the graphs of the function of Example 5
and its derivative. Notice that when y grows
rapidly (near —2), y" is large. And when y
grows slowly, y" is near 0.

1.5

FIGURE 3
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)
Au Av
V— — u—
dfu) _ - Alu/v) i Ax Ax
dx \ v Av—0  Ax Krea v(v + Av)

As Ax—0, Av—>0 also, because v = g(x) is differentiable and therefore continuous. Thus,
using the Limit Laws, we get

TR T
dfu) Ax—0 Ax uA)HOAx_vdx udx
dx \ v v lim (v + Av) v?

Ax—0

The Quotient Rule If f and g are differentiable, then

4
dx

d d
[ P ] 93 )] = £~ [g(0)]

g | [9(x)]?

In words, the Quotient Rule says that the derivative of a quotient is the denominator
times the derivative of the numerator minus the numerator times the derivative of the
denominator, all divided by the square of the denominator.

The Quotient Rule and the other differentiation formulas enable us to compute the
derivative of any rational function, as the next example illustrates.

. . x24+x-2
[ EXAMPLES Using the Quotient Rule Lety = . Then
x

(x3+6)%(x2+x—2)—(x2+x—2)~§x—(x3+6)

!

. @ + 6)
(P +ex+ 1) - (P +x —2)(3x?)
(x* + 6)*
Co@xt 12+ 6) — (Bxt o+ 3x° — 6x%)
(x* + 6)?
—x'=2x  +6x*+ 12x+ 6 -
(x* + 6)?

i1 EXAMPLE6 Find an equation of the tangent line to the curve y = ¢*/(1 + x*) at the
point (1, %e)
SOLUTION According to the Quotient Rule, we have
d d
1 + 2N o N e B 1 i 2
o O —e )

dx (1 + x*)?

([ +xP)er —e(2x) (1 —x)?
- (1 + x?) CEY S
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2.5 So the slope of the tangent line at (1, %e) is

gy
dx x=1

=0

This means that the tangent line at (1, ze) is horizontal and its equation is y = se. [See

—2 SR : 35  Figure 4. Notice that the function is increasing and crosses its tangent line at (1, 2e) ]
FIGURE 4
Note: Don’t use the Quotient Rule every time you see a quotient. Sometimes it’s eas-
ier to rewrite a quotient first to put it in a form that is simpler for the purpose of differen-
tiation. For instance, although it is possible to differentiate the function
3x%2 + 24/x
F(x) = ____‘/_:
X
using the Quotient Rule, it is much easier to perform the division first and write the func-
tion as
F(x) =3x + 2x~7
before differentiating.
We summarize the differentiation formulas we have learned so far as follows.
d d d
Table of Differentiation Formulas — () =0 — (x") = nx""! — (e") = ¢€*
dx dx dx
(cf) =cf (f+g =r+¢g (f=9' =1 —¢
, Y _9f —fd
(foy =19+ of (— =l
g g
m Exercises
1. Find the derivative of f(x) = (1 + 2x*)(x — x?) in two ways: 6 y— e’ 6 v = e’
by using the Product Rule and by performing the multiplication i )gz T Ty
first. Do your answers agree? -1
2. Find the derivative of the function 7. 9(x) = 2% + 1 8.f() = 4 + ¢2
x* = 55 + fx 1 3
PO == 9. Fy) = | = — )0 +5»)
4 ¥
in two ways: by using the Quotient Rule and by simplifying 10. R®) = (1 + e’)(3 — \/[)
first. Show that your answers are equivalent. Which method do .
+ 1
you prefer? "N y=—> 12, y = —~
YT o YT P rx-2
3-24 Differentiate. 242 t
3 § 13. Y T T 1 1 14. Y. = 0
3. f(x) = (x* + 2x)e" 4 g(x) = /x &* tt =3+ 1 (t—1)

Graphing calculator or computer with graphing software required 1. Homework Hints available in TEC



]

SECTION 3.2 THE PRODUCT AND QUOTIENT RULES 189

Rl

az

& 3= "= 29 6. y— 1 37. (a) If f(x) = (x* = 1)/(x* + 1), find f'(x) and f"(x).
' T s+ ket a5 (b) Check to see that your answers to part (a) are reasonable
2 = 20/p . by comparing the graphs of f, f', and f".
7. y=—"""— 18. z = w**(w + ce")
v 38. (a) If f(x) = (x* — 1)e* find f'(x) and f"(x).
oy - a5 (b) Check to see that your answers to part (a) are reasonable
19. f(1) = TN 20. g(1) = A by comparing the graphs of f, f', and f”.
39. If f(x) = x*(1 + x), find f(1).
) = A 2 ()_l—xe"
A& =g W= e 0. 1t g(x) = x/e, find ().
% ax + b 41. Suppose that f(5) = 1, f'(5) = 6, g(5) = —3, and g'(5) = 2.
7, flx) = . 2. f(x) = ox+d Find the following values.
&t @ (f9)'(5) ) (f/9)(5)
(© (9/1)(5)
i . - 42. Suppose that f(2) = =3, ¢(2) = 4, f'(2) = —2, and
25-28 Find f'(x) and f"(x). 4'(2) = 7. Find #'(2).
25. f(x) = x‘e* 26. f(x) = x*e* (a) h(x) = 5f(x) — 4g(x) (0) h(x) = f(x)g(x)
x? x () g(x)
- = (& =) =—— () Bl == e
21. f(x) 1 ox 28. f(x) PR g(x) 1+ f(x)
o 43. If f(x) = e*g(x), where g(0) = 2 and ¢'(0) = 5, find f'(0).
29-30 F'md an gqgatlon of the tangent line to the given curve at 44, Tf h(2) = 4 and h'(2) = —3, find
the specified point.
2 *
2. y=—"— (1,1) 0 y=", (1,0 4 (kx
x+ 1 X dx X -
45. If d the functions wh hi h let
31-32 Find equations of the tangent line and normal line to the U ail | £ha Tas: T 1on_s WHOSE BHapus arc suowi, 1o
) ; : u(x) = f(x)g(x) and v(x) = f(x)/g(x).
given curve at the specified point. . , . ,
s (a) Find u'(1). (b) Find v'(5).
x
3. y=2xe*, (0,0 2. y=——, (4,04
y =2xe’, (0,0) Y= ( ) v
I~
33. (a) The curve y = 1/(1 + x?) is called a witch of Maria f ~
Agnesi. Find an equation of the tangent line to this curve . g
at the point (—1,%). o
(b) Tllustrate part (a) by graphing the curve and the tangent 0 1
line on the same screen.
34. (a) The curve y = x/(1 + x?) is called a serpentine. Find 46. Let P(x) = F (x)G(x) and Q(x) = F(x)/G(x), where F' and G
an equation of the tangent line to this curve at the point are the functions whose graphs are shown.
(3,0.3). (a) Find P'(2). (b) Find Q' (7).
(b) Hlustrate part (a) by graphing the curve and the tangent
line on the same screen. b \
35, (a) If f(x) = (x* — x)e”, find f'(x). EL
(b) Check to see that your answer to part (a) is reasonable by :
comparing the graphs of f and f".
36, () I () = /22" + x + 1), find (). -1 £
N (b) Check to see that your answer to part (a) is reasonable by ol

comparing the graphs of f and f".
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47.

48.

49.

50.

51.
52.

54.

CHAPTER 3 DIFFERENTIATION RULES

If g is a differentiable function, find an expression for the
derivative of each of the following functions.

(d) y= (C)y=g—({l

—
g(x) x
If £ is a differentiable function, find an expression for the
derivative of each of the following functions.
F(x)

(a) y = x*f(x) ) y= fxz

x? 1+ xf(x)

@iyp= ===

f&) Vx

In this exercise we estimate the rate at which the total personal
income is rising in the Richmond-Petersburg, Virginia, metro-
politan area. In 1999, the population of this area was 961,400,
and the population was increasing at roughly 9200 people per
year. The average annual income was $30,593 per capita, and
this average was increasing at about $1400 per year (a little
above the national average of about $1225 yearly). Use the
Product Rule and these figures to estimate the rate at which
total personal income was rising in the Richmond-Petersburg
area in 1999. Explain the meaning of each term in the Product
Rule.

A manufacturer produces bolts of a fabric with a fixed width.
The quantity ¢ of this fabric (measured in yards) that is sold is
a function of the selling price p (in dollars per yard), so we can
write ¢ = f(p). Then the total revenue earned with selling price
pis R(p) = pf(p).
(a) What does it mean to say that £(20) = 10,000 and
f'(20) = —350?
(b) Assuming the values in part (a), find R'(20) and interpret
your answer.

@ y = xg(x)

©y=

On what interval is the function f(x) = x’e* increasing?

On what interval is the function f(x) = x’e* concave
downward?

. How many tangent lines to the curve y = x/(x + 1) pass

through the point (1, 2)? At which points do these tangent lines
touch the curve?

Find equations of the tangent lines to the curve

x= 1

y—x+1

that are parallel to the line x — 2y = 2.

55.

56.

57.

58.

60.

Find R'(0), where

x — 3x% + 5x°
1+ 3x® + 6x° + 9x°

R(x) =

Hint: Instead of finding R'(x) first, let f(x) be the numerator
and g(x) the denominator of R(x) and compute R '(0) from £(0),
1'(0), ¢(0), and ¢'(0).

Use the method of Exercise 55 to compute Q'(0), where

1+ x + x%+ xe*
Q(X)=T———“—

—x + x? — xe*

(a) Use the Product Rule twice to prove that if f, g, and h are
differentiable, then (fgh)' = fgh + fg'h + fgh'.

(b) Taking f= g = h in part (a), show that

L WP = 3 0FS )
X

(c) Use part (b) to differentiate y = e™*.

(@) If F(x) = f(x)g(x), where f and g have derivatives of all
orders, show that F" = f"g + 2f'g" + fg".

(b) Find similar formulas for F and F .

(c) Guess a formula for .

. Find expressions for the first five derivatives of f(x) = x%e%

Do you see a pattern in these expressions? Guess a formula for
®(x) and prove it using mathematical induction.
p g

(a) If g is differentiable, the Reciprocal Rule says that

d [_1_] A
dx | g(x) [g(0)]

Use the Quotient Rule to prove the Reciprocal Rule.

(b) Use the Reciprocal Rule to differentiate the function in
Exercise 16.

(c) Use the Reciprocal Rule to verify that the Power Rule is
valid for negative integers, that is,

d
E (x*n) e %nx*n*l

for all positive integers 7.
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See Section 1.3 for a review of
Composite functions.

Suppose you are asked to differentiate the function

F(x) = /x2+ 1

The differentiation formulas you learned in the previous sections of this chapter do not
enable you to calculate F'(x).

Observe that F is a composite function. In fact, if we let y = f(u) = /u and let
u = g(x) = x* + 1, then we can write y = F(x) = f(g(x)), that is, F = fo g. We know
how to differentiate both f and g, so it would be useful to have a rule that tells us how to
find the derivative of F' = fo g in terms of the derivatives of f and g.

It turns out that the derivative of the composite function f o g is the product of the deriv-
atives of f and g. This fact is one of the most important of the differentiation rules and is
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James Gregory

The first person to formulate the Chain Rule
was the Scottish mathematician James Gregory
(1638—1675), who also designed the first practi-
cal reflecting telescope. Gregory discovered the
basic ideas of calculus at about the same time
as Newton. He became the first Professor of
Mathematics at the University of St. Andrews
and later held the same position at the Univer-
sity of Edinburgh. But one year after accepting
that position he died at the age of 36.

CHAPTER 3 DIFFERENTIATION RULES

called the Chain Rule. It seems plausible if we interpret derivatives as rates of change.
Regard du/dx as the rate of change of u with respect to x, dy/du as the rate of change of
y with respect to u, and dy/dx as the rate of change of y with respect to x. If u changes
twice as fast as x and y changes three times as fast as u, then it seems reasonable that y
changes six times as fast as x, and so we expect that

dy _dydu
dx du dx

The Chain Rule If g is differentiable at x and f is differentiable at g(x), then the
composite function F = fo g defined by F(x) = f(g(x)) is differentiable at x and
F' is given by the product

F'(x) = f'(g(x)) - g'(x)
In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then

dy _ dy du
dx du dx

COMMENTS ON THE PROOF OF THE CHAIN RULE Let Au be the change in u corresponding to
a change of Ax in x, that is,

Au = g(x + Ax) — g(x)

Then the corresponding change in y is
Ay = flu + Au) — f(u)

It is tempting to write

dy
2 — im —=
dx a0 Ax
m . Ay Au
= 1m — —
ax—0 A Ax
3 Yy
= lim — - lim —
Ax—0 Ay Ax—0 Ax
: Ay ; Au (Note that Au — 0as Ax — 0
= lim — - lim —
M—0 Ay Ax—0 Ax since ¢ is continuous.)
_dy du
du dx

The only flaw in this reasoning is that in (1) it might happen that Au = 0 (even when

Ax # 0) and, of course, we can’t divide by 0. Nonetheless, this reasoning does at least
suggest that the Chain Rule is true. A full proof of the Chain Rule is given at the end of
this section. s

The Chain Rule can be written either in the prime notation

[2] (fog)(x) =f"(g9(x) - g'(x)
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or, if y = f(u) and u = g(x), in Leibniz notation:

H & _dy du
dx du dx

Equation 3 is easy to remember because if dy/du and du/dx were quotients, then we could
cancel du. Remember, however, that du has not been defined and du/dx should not be
thought of as an actual quotient.

EXAMPLE 1 Using the Chain Rule Find F'(x) if F(x) = /x* + 1.

SOLUTION 1 (using Equation 2): At the beginning of this section we expressed F as
F(x) = (f° g)(x) = f(g(x)) where f(1) = +u and g(x) = x> + 1. Since

1
23/u

we have F'(x) = f'(g(x)) * g'(x)

flu) = u~\? = and g'(x) = 2x

1 X
j— .2 =
N N

SOLUTION 2 (using Equation 3): If we let u = x> + 1 and y = +/u, then

du x

DI O SN S
FO=ra =2 P = ams1® = 7o

When using Formula 3 we should bear in mind that dy/dx refers to the derivative of
y when y is considered as a function of x (called the derivative of y with respect to x),
whereas dy/du refers to the derivative of y when considered as a function of u (the deriv-
ative of y with respect to u). For instance, in Example 1, y can be considered as a function
of x (y = /x2+ 1) and also as a function of u (y = ﬁ) Note that

EX x 1

dy
= F'(x) = ——— h = fly) =
o FW =y whereas o= fl) =
Note: In using the Chain Rule we work from the outside to the inside. Formula 2 says

that we differentiate the outer function f [at the inner function g(x)] and then we multiply
by the derivative of the inner function.

d
. ¥ 1]
& ) (gx)) = f (gt - g
LU 7 s, S P e
outer evaluated derivative cvaluated derivative
function at inner of outer at inner of inner

function function function function

i1 EXAMPLE2 Differentiate (a) y = sin(x*) and (b) y = sin’x.

SOLUTION
(a) If y = sin(x?), then the outer function is the sine function and the inner function is
the squaring function, so the Chain Rule gives

dy d

— : 2 P 2
2 sin (x» = cos (x> - 2%
X X | S——— ——) | — | — LS — TG S
outer cvaluated derivative evaluated derivative
function al inner of outer at inner of inner
function function function function

= 2x cos(x?)
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See Reference Page 2 or Appendix C.

(b) Note that sin>x = (sin x)*. Here the outer function is the squaring function and the
inner function is the sine function. So

dy d ., .
— = — (sin x) = 2 + (sinx) -+ cosx
dx dx
[—— Niogerannne) (T P
inner derivative evaluated derivative
function of outer at inner of inner
function function function

The answer can be left as 2 sin x cos x or written as sin 2x (by a trigonometric identity
known as the double-angle formula). B

In Example 2(a) we combined the Chain Rule with the rule for differentiating the sine
function. In general, if y = sin u, where u is a differentiable function of x, then, by the
Chain Rule,

& _dydu_ o du
dx  dudx M
d d
Thus E(sin u) = cosud—z

In a similar fashion, all of the formulas for differentiating trigonometric functions can
be combined with the Chain Rule.

Let’s make explicit the special case of the Chain Rule where the outer function f is a
power function. If y = [g(x)]", then we can write y = f (1) = u” where u = g(x). By using
the Chain Rule and then the Power Rule, we get

& 59

du
- _— n—1 — n—1_1
s & n[g(x)]"'g'(x)

The Power Rule Combined with the Chain Rule If n is any real number and
u = g(x) is differentiable, then

d ny — n—1 _d_u
= W") = nu I
. d n n—1 !
Alternatively, T [9(0)]" = n[g()]"™" - g'(x)

Notice that the derivative in Example 1 could be calculated by taking n = 1 in Rule 4.

EXAMPLE 3 Using the Chain Rule with the Power Rule Differentiate y = (x* — 1)'®.
SOLUTION Taking u = g(x) = x> — 1 and n = 100 in (4), we have

dy d d
DL — 1) = 100 — 1P == (x° — 1
dx dx e ) ( ) dx (x )
= 100(x> — 1)” « 3x? = 300x*(x* — 1)” panm
1

EXAMPLE4 Find f'(x) if f(x) = —3—\/__——7.

X% x ¥



The graphs of the functions y and y” in
Example 6 are shown in Figure 1. Notice that
y' is large when y increases rapidly and

y' = 0 when y has a horizontal tangent. So
our answer appears to be reasonable.

o I(iJ
-2 /\ 1
SV

FIGURE 1

-10
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SOLUTION First rewrite f:  f(x) = (x* + x + 1)"'3, Thus
' — _lr 2 —~4/3 d 2
fix)==—3G*+x+ 1) —G*+x+ 1)
dx
= —1(x>+x+ 1)*2x + 1) e
EXAMPLE S Find the derivative of the function
t—2 Y
[ ]
90) <2t + 1)
SOLUTION Combining the Power Rule, Chain Rule, and Quotient Rule, we get
t—=2\d[t-2
') =9 e
g0 <2t+l> dt<2t+1>

(t—2>8(2t+1)-1—2(t—2) 45(t — 2)®
2%+ 1 (21 + 1) IR

EXAMPLES Using the Product Rule and the Chain Rule
Differentiate y = (2x + 1)°(x* — x + 1)%

SOLUTION In this example we must use the Product Rule before using the Chain Rule:

d d d
Ey=(2x+ s et et IF S0 = 4 1o + 1P

d
=(2x+1)5-4(x3—x+1)3—d—(x3—x+1)
X

d
+ (3 —x+ D*502x + 1)4Zx—(2x+ 1)
=402x + 1P(x* —x + 1D’Gx> — 1) + 5(x* — x + D)*Qx + 1)*-2

Noticing that each term has the common factor 2(2x + 1)*(x* — x + 1)*, we could
factor it out and write the answer as

d
=20+ DY~k DT F 63— 9x 4 3) —

EXAMPLE 7 Differentiate y = e*"*,

SOLUTION Here the inner function is g(x) = sin x and the outer function is the exponen-
tial function f(x) = e*. So, by the Chain Rule,
4 2
dx dx

. - d.,. A
(e"r) = es‘“"-gx— (sin x) = e""*cos x s

We can use the Chain Rule to differentiate an exponential function with any base a > 0.
Recall from Section 1.6 that a = ¢"“. So

ax — (elna)x — e(lna)x
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Don’t confuse Formula 5 (where x is the
exponent) with the Power Rule (where x is
the base):

E (x") = nx""!

and the Chain Rule gives

d d d
i, XY o i (na)xy — ,(na)x
I (a*) T (eM9) =e = (In a)x

=l Ing=¢g*lna

because In a is a constant. So we have the formula

d
E[ T (@)=a"lna

In particular, if a = 2, we get

d
— (27) = 2"In2
[6] 7 &) n

In Section 3.1 we gave the estimate
d
— (2%) = (0.69)2*
dx

This is consistent with the exact formula (6) because In 2 =~ 0.693147.

The reason for the name “Chain Rule” becomes clear when we make a longer chain by
adding another link. Suppose that y = f(u), u = g(x), and x = h(r), where f, g, and h are
differentiable functions. Then, to compute the derivative of y with respect to ¢, we use the
Chain Rule twice:

b _ by &b duds
dt dx dt du dx dt

I1 EXAMPLES Using the Chain Rule twice If f(x) = sin(cos(tan x)), then

f'(x) = cos(cos(tan x)) d%c cos(tan x)

I

cos(cos(tan x))[ —sin(tan x)] ?ld; (tan x)

I

—cos(cos(tan x)) sin(tan x) sec’x

Notice that we used the Chain Rule twice.

EXAMPLE 9 Differentiate y = e,

SOLUTION The outer function is the exponential function, the middle function is the
secant function, and the inner function is the tripling function. So we have

&

d
il eS“”E (sec 30)

d
= ¢**% sec 30 tan 30 —— (30
e*** sec 36 tan dO( )

= 3¢*?% sec 36 tan 360 55



If we think of the curve as being traced out by
a moving particle, then dy/dt and dx/dt are

the vertical and horizontal velocities of the par-

ticle and Formula 7 says that the slope of the
tangent is the ratio of these velocities.
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Tangents to Parametric Curves

In Section 1.7 we discussed curves defined by parametric equations

x=f01 y=90

The Chain Rule helps us find tangent lines to such curves. Suppose f and g are differen-
tiable functions and we want to find the tangent line at a point on the curve where y is also
a differentiable function of x. Then the Chain Rule gives

dy _dy  dx

di  dx dt
If dx/dt # 0, we can solve for dy/dx:

dy
dy dt dx
7 e it~ #0
dx  dx Y
dt

Equation 7 (which you can remember by thinking of canceling the dt’s) enables us
to find the slope dy/dx of the tangent to a parametric curve without having to eliminate
the parameter z. We see from (7) that the curve has a horizontal tangent when dy/dt = 0
(provided that dx/dt # 0) and it has a vertical tangent when dx/dt = 0 (provided that
dy/dr # 0).

EXAMPLE 10 Find an equation of the tangent line to the parametric curve
x = 2sin 2t y=12sint
at the point (\/3, l). Where does this curve have horizontal or vertical tangents?

SOLUTION At the point with parameter value ¢, the slope is

d d
2 L (250
ﬂ dt dt
dx dx d
== — (2 sin 2¢
dt dt( sin 21)
2cost cos t

B 2(cos 21)(2) " 2cos 21

The point (\/3, 1) corresponds to the parameter value ¢ = 7r/6, so the slope of the tan-
gent at that point is

dy ~cos(w/6)  \3/2 /3
dx | 2cos(m/3) 2(3) 2

An equation of the tangent line is therefore

y—1=£(X‘*\/§) or y=§x—

2
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e

FIGURE 2

Figure 2 shows the curve and its tangent line. The tangent line is horizontal when
dy/dx = 0, which occurs when cos 1 = 0 (and cos 2¢ # 0), that is, when = 7/2 or
37r/2. (Note that the entire curve is given by 0 < ¢ < 24r.) Thus the curve has horizontal
tangents at the points (0, 2) and (0, —2), which we could have guessed from Figure 2.

The tangent is vertical when dx/dt = 4 cos 2t = 0 (and cos ¢ # 0), that is, when
t = ar/4, 31/4, 57/4, or Tar/4. The corresponding four points on the curve are
(i2, ) ) If we look again at Figure 2, we see that our answer appears to be
reasonable. s

How to Prove the Chain Rule
Recall that if y = f(x) and x changes from a to @ + Ax, we defined the increment of y as

Ay = f(a + Ax) — f(a)
According to the definition of a derivative, we have

Ay
P g = W)

So if we denote by & the difference between the difference quotient and the derivative,
we obtain

Ax—0 A_x

lim & = Alxigo<ﬁ - f’(a)) =f'(a) = f'(a) =0

A
But 8=A—i~—f’(a) = Ay = f'(a) Ax + & Ax

If we define & to be 0 when Ax = 0, then & becomes a continuous function of Ax. Thus,
for a differentiable function f, we can write

Ay = f'(a) Ax + & Ax where & —0 as Ax—0

and & is a continuous function of Ax. This property of differentiable functions is what
enables us to prove the Chain Rule.

PROOF OF THE CHAIN RULE Suppose u = g(x) is differentiable at a and y = f(u) is differ-
entiable at b = g(a). If Ax is an increment in x and Au and Ay are the corresponding

increments in u and y, then we can use Equation 8 to write,
{

E] Au = g'(a) Ax + &, Ax = [g'(a) + &1 ] Ax
where g, — 0 as Ax — 0. Similarly

Ay = F'(b) Au + &, Au = [£'(b) + &,] Au

where &, — 0 as Au — 0. If we now substitute the expression for Au from Equation 9
into Equation 10, we get

Ay = [f'(b) + &]lg'(a) + &]Ax

Ay

=10 + ellg@ + )]

SO

As Ax — 0, Equation 9 shows that Au — 0. So both &, — 0 and &, — 0 as Ax — 0.



Therefore

dy _
dx

lim
Ax—0 Ax
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X i [£) + eallg@) + o]

= f'(b)g'(a) = f'(9(a))g'(a)
This proves the Chain Rule.

m Exercises

1-6 Write the composite function in the form f(g(x)).
[Identify the inner function u = g(x) and the outer function
y = f(u).] Then find the derivative dy/dx.

1. y=<1+4x 2

3. y = tan 7x ' 4

5.y=e‘/; 6

.y = (2x* + 5)*
.y = sin(cot x)

, B

7-36 Find the derivative of the function.

7. F(x) = (x* + 3x? — 2)° 8.

9. F(x) = 1 — 2x 10.

1

") =7 12.
13. y = cos(a® + x?) 14.
15. h(t) =2 — 3 16.
17. y = xe™ 18.

19. y = 2x — 5)*8x* — 5)°? 20.

21, y = e*°®* 22.
241y
23 y= 24.
4 <x2 -1
25, y = sec®x + tan’x 26.
27 y=—o" 28
"y Jr2+ 1

29. y = gin(tan 2x) 30
31 y —_— 2sin7rx 32
3. y = cot?(sin 6) 34

35. y = cos+/sin(tan mx) 36.

o

F(x) = (4x — xH)'®
f) =1 +x*"

f(@) =1+ tant

y=a’ + cos’x

y = 3 cot(n6)

y = e *cos 4t

h(r) = (¢* — D + 1)

y=10'"*
5 N3
y
G(y) =
Ol (y + 1)
B eu o e*u
& e +e™
.y = ekmn\/;

t
0= N7

3740 Find y and y".
31. y = cos(x?) 38

.y = sin(sin(sin x))

Ly =vx+x+ Jx
X2

Ly =23

.y = cos’x

39

.y = e“sin Bx i 40, y = ¢

41-44 Find an equation of the tangent line to the curve at the given
point.

M

43

Cy=@+20"° (1) 2. y=JT+ 5, 253

. y = sin(sin x), (i, 0) 44. y = sinx + sin’x, (0, 0)

45,

Y,
[ K]

46.

Y
K]

41.

49.

50.

51.

52.

. (a) Find an equation of the tangent line to the curve
y =2/(1 + ™) at the point (0, 1).
(b) Mlustrate part (a) by graphing the curve and the tangent line
on the same screen.

(a) The curve y = |x|/v/2 — x? is called a bullet-nose curve.
Find an equation of the tangent line to this curve at the
point (1, 1). .

(b) Illustrate part (a) by graphing the curve and the tangent line
on the same screen.

(a) If f(x) = x+/2 — x2, find f'(x).
(b) Check to see that your answer to part (a) is reasonable by
comparing the graphs of f and f"

. The function f(x) = sin(x + sin 2x), 0 < x < 7, arises in
applications to frequency modulation (FM) synthesis.
(a) Use a graph of f produced by a graphing device to make a
rough sketch of the graph of f"
(b) Calculate f'(x) and use this expression, with a graphing
device, to graph f' Compare with your sketch in part (a).

Find all points on the graph of the function
f(x) = 2sin x + sin?c at which the tangent line is horizontal.

Find the x-coordinates of all points on the curve
y = sin 2x — 2 sin x at which the tangent line is horizontal.

If F(x) = f(g(x)), where f(—2) =8, f'(=2) =4, f'(5) = 3,
g(5) = —2, and ¢'(5) = 6, find F'(5).

If h(x) = /4 + 3f(x), where f(1) = 7 and f'(1) = 4,
find 7(1).

@ Graphing calculator or computer with graphing software required

[cas) Computé{} algebra system required 1. Homework Hints available in TEC
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53. A table of values for f, g, f', and ¢’ is given.

x| f(x) g(x) f'(x) g'(x)

1 3 2 4 6
2 1 8 5 7
3 7 2 7 9

(a) If A(x) = f(g(x)), find A'(1).
(b) If H(x) = g(f(x)), find H'(1).
54. Let f and g be the functions in Exercise 53.

(a) If F(x) = f(f(x)), find F'(2).
(b) If G(x) = g(g(x)), find G'(3).

55. If f and g are the functions whose graphs are shown, let

u(x) = f(g(x)), v(x) = g(f(x)), and w(x) = g(g(x)). Find each

derivative, if it exists. If it does not exist, explain why.

@w()  ®0)  © W)
y
\ s
.
AN L
0 1 x|

56. If f is the function whose graph is shown, let A(x) = f(f(x))
and g(x) = f(x?). Use the graph of f to estimate the value
of each derivative.

(@) K'(2) b) g'2)
y N
y=f|/
T
» K
0 1 X|

57. Use the table to estimate the value of A'(0.5), where
h(x) = f(g(x)).

x 0 0.1 0.2 0.3 0.4 0.5 0.6

F&) | 126 | 148 | 184 | 230 | 259 | 275 | 29.1

g(x) | 0.58 0.40 0.37 0.26 0.17 0.10 0.05

58. If g(x) = f(f(x)), use the table to estimate the value of ¢'(1).

x 0.0 0.5 1.0 1.5 2.0 2.5

) 1.7 1.8 2.0 2.4 3.1 4.4

59. Suppose f is differentiable on R. Let F(x) = f(e*) and
G(x) = ¢/, Find expressions for (a) F'(x) and (b) G'(x).

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

n.

72

Suppose f is differentiable on R and « is a real number.
Let F(x) = f(x*) and G(x) = [ f(x)]* Find expressions
for (a) F'(x) and (b) G'(x).

Let r(x) = f(g(h(x))), where h(1) = 2, g(2) = 3, h'(1) = 4,
g'(2) = 5, and f'(3) = 6. Find r'(1).

If g is a twice differentiable function and f(x) = xg(x?), find
f"in terms of ¢, g, and g".

If F(x) = f(3f(4f(x))), where f(0) = 0 and f'(0) = 2,
find F'(0).

If F(x) = f(xf(xf(x), where f(1) = 2, f(2) = 3,/'(1) = 4,
f'(2) = 5,and f'(3) = 6, find F'(1).

Show that the function y = ¢**(A cos 3x + B sin 3x) satisfies
the differential equation y” — 4y" + 13y = 0.

For what values of r does the function y = e satisfy the
differential equation y" — 4y" + y = 0?

Find the 50th derivative of y = cos 2x.
Find the 1000th derivative of f(x) = xe ™.

The displacement of a particle on a vibrating string is given by
the equation
s(2) = 10 + § sin(10770)

where s is measured in centimeters and ¢ in seconds. Find the
velocity of the particle after ¢ seconds.

If the equation of motion of a particle is given by

s = A cos(wt + 0), the particle is said to undergo simple
harmonic motion.

(a) Find the velocity of the particle at time .

(b) When is the velocity. 0?7

A Cepheid variable star is a star whose brightness alternately
increases and decreases. The most easily visible such star is
Delta Cephei, for which the interval between times of maxi-
mum brightness is 5.4 days. The average brightness of this star
is 4.0 and its brightness changes by *0.35. In view of these
data, the brightness of Delta Cephei at time 7, where ¢ is mea-
sured in days, has been modeled by the function

2t
B(t) = 4.0 + 0.35sin| ——
® sm( A >

(a) Find the rate of change of the brightness after 7 days.
(b) Find, correct to two decimal places, the rate of increase
after one day.

In Example 4 in Section 1.3 we arrived at a model for the
length of daylight (in hours) in Philadelphia on the ¢th day of
the year:

2ar
L) = 12 + 2.8 sin| ——(¢ —
(1) 2831n[365 (t 80)}

Use this model to compare how the number of hours of day-
light is increasing in Philadelphia on March 21 and May 21.
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@ 73. The motion of a spring that is subject to a frictional force or [ 78. The table gives the US population from 1790 to 1860.

a damping force (such as a shock absorber in a car) is often
modeled by the product of an exponential function and a sine
or cosine function. Suppose the equation of motion of a point
on such a spring is

s(t) = 2¢7"" sin 27t

where s is measured in centimeters and ¢ in seconds. Find
the velocity after ¢ seconds and graph both the position and
velocity functions for 0 < ¢ < 2.

. Under certain circumstances a rumor spreads according to the

equation

P®) 1+ ae ™™

where p(t) is the proportion of the population that knows

the rumor at time ¢ and a and k are positive constants. [In

Section 7.5 we will see that this is a reasonable equation

for p(1).]

(a) Find lim—. p(t).

(b) Find the rate of spread of the rumor.

(c) Graph p for the case a = 10, k = 0.5 with ¢ measured in
hours. Use the graph to estimate how long it will take for
80% of the population to hear the rumor.

. A particle moves along a straight line with displacement s(t),
velocity »(¢), and acceleration a(f). Show that

a(t) = v(2) %

Explain the difference between the meanings of the deriv-
atives dv/dt and dv/ds.

. Alr is being pumped into a spherical weather balloon. At any
time ¢, the volume of the balloon is V(¢) and its radius is r(t).
(a) What do the derivatives dV/dr and dV/dt represent?

(b) Express dV/dt in terms of dr/dt.

. The flash unit on a camera operates by storing charge on a
capacitor and releasing it suddenly when the flash is set off.
The following data describe the charge O remaining on the
capacitor (measured in microcoulombs, nC) at time # (mea-
sured in seconds).

t 0.00 0.02 0.04 0.06 0.08 0.10

9 100.00 | 81.87 | 67.03 | 54.88 | 44.93 | -36.76

(a) Use a graphing calculator or computer to find an expo-
nential model for the charge.

(b) The derivative Q'(r) represents the electric current (mea-
sured in microamperes, wA) flowing from the capacitor to
the flash bulb. Use part (a) to estimate the current when
t = 0.04 s. Compare with the result of Example 2 in
Section 2.1.

Year Population Year Population
1790 3,929,000 1830 12,861,000
1800 5,308,000 1840 17,063,000
1810 7,240,000 1850 23,192,000
1820 9,639,000 1860 31,443,000

(a) Use a graphing calculator or computer to fit an exponen-
tial function to the data. Graph the data points and the
exponential model. How good is the fit?

(b) Estimate the rates of population growth in 1800 and
1850 by averaging slopes of secant lines.

(c) Use the exponential model in part (a) to estimate the
rates of growth in 1800 and 1850. Compare these
estimates with the ones in part (b).

(d) Use the exponential model to predict the population in
1870. Compare with the actual population of 38,558,000.
Can you explain the discrepancy?

78-81 Find an equation of the tangent line to the curve at the
point corresponding to the given value of the parameter.

9. x=t"+1, y=t3+1 t=-1
80. x =cosO + sin260, y=sinf + cos20; 0=0

81.x=e‘ﬁ, y=t—1Int* t=1

82-83 Find the points on the curve where the tangent is horizon-
tal or vertical. If you have a graphing device, graph the curve to
check your work.

82 x =20 +3:2—-12t, y=23+3>+1
83. x =10 — % y=1>— 12t

]
(1<

Y
K]

84. Show that the curve with parametric equations x = sin £,

y = sin(t + sin £) has two tangent lines at the origin and find
their equations. Illustrate by graphing the curve and its
tangents.

85. A curve C is defined by the parametric equations x = ¢?,

y=1t—3t

(a) Show that C has two tangents at the point (3, 0) and find
their equations.

(b) Find the points on C where the tangent is horizontal or
vertical.

(c) Ilustrate parts (a) and (b) by graphing C and the tangent
lines.

86. The cycloid x = r(0 — sin ), y = r(1 — cos 6) was
discussed in Example 7 in Section 1.7.
(a) Find an equation of the tangent to the cycloid at the
point where 0 = /3.
(b) At what points is the tangent horizontal? Where is it
vertical?
(c) Graph the cycloid and its tangent lines for the case r = 1.
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[cAs] 87.

[cAs] 88.

89

90.

CHAPTER 3 DIFFERENTIATION RULES

Computer algebra systems have commands that differentiate
functions, but the form of the answer may not be convenient
and so further commands may be necessary to simplify the
answer.

(a) Use a CAS to find the derivative in Example 5 and com-
pare with the answer in that example. Then use the sim-
plify command and compare again.

(b) Use a CAS to find the derivative in Example 6. What hap-
pens if you use the simplify command? What happens if
you use the factor command? Which form of the answer
would be best for locating horizontal tangents?

(a) Use a CAS to differentiate the function

xt=x+1
A Vi

and to simplify the result.
(b) Where does the graph of f have horizontal tangents?
(c) Graph f and f' on the same screen. Are the graphs con-
sistent with your answer to part (b)?

(a) If n is a positive integer, prove that

n—1

d . .
— (sin"x cos nx) = nsin" " 'x cos(n + 1)x

dx

(b) Find a formula for the derivative of y = cos"x cos nx
that is similar to the one in part (a).

Find equations of the tangents to the curve x = 3¢* + 1,
y = 21> + 1 that pass through the point (4, 3).

91.

92.

93.

94,

Use the Chain Rule to show that if 6 is measured in degrees,
then
d T
— (sin ) = ——cos 0
do ) 180
(This gives one reason for the convention that radian measur-
is always used when dealing with trigonometric functions i

calculus: The differentiation formulas would not be as simg
if we used degree measure.)

(a) Write |x§ = \/)7 and use the Chain Rule to show that

_fi_, (=2
ax x|

(b) If f(x) = | sin x|, find f'(x) and sketch the graphs of f
and f'. Where is f not differentiable?

(c) If g(x) = sin | x|, find g(x) and sketch the graphs of g
and g'. Where is g not differentiable?

If y = f(u) and u = g(x), where f and g are twice differen-
tiable functions, show that

d*y (du\* dy d*u
=7\ T e

du® \ dx du dx
Assume that a snowball melts so that its volume decreases at
a rate proportional to its surface area. If it takes three hours

for the snowball to decrease to half its original volume, how
much longer will it take for the snowball to melt completely?

d*y
dx?
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Derivatives of Logarithmic Functions

Formula 3.4.5 says that

d
o (@)=a"lna

In this section we use implicit differentiation to find the derivatives of the logarithmic func-
tions y = log,x and, in particular, the natural logarithmic function y = In x. (It can be
proved that logarithmic functions are differentiable; this is certainly plausible from their
graphs. See Figure 4 in Section 1.6 for the graphs of the logarithmic functions.)

d 1
_1 A p—
[1] 2 (ogax) =

PROOF Lety = log,x. Then
a’=x
Differentiating this equation implicitly with respect to x, using Formula 3.4.5, we get _

d
a’(In ) ;il =1
X

dy 1 1

and so (S—

dx a’lna xIna

If we put @ = e in Formula 1, then the factor In a on the right side becomes In e = 1
and we get the formula for the derivative of the natural logarithmic function log, x = In x:

Z] = mx =

By comparing Formulas 1 and 2, we see one of the main reasons that natural logarithms
(logarithms with base e) are used in calculus: The differentiation formula is simplest when
a = e because Ine = 1.
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7 EXAMPLE1 Differentiate y = In(x’ + 1):
SOLUTION To use the Chain Rule, we let # = x* + 1. Then y = In u, so

dy dy du 1 du 1 5 3x?2
== =03 == [
dx du dx udx x>+ 1 x>+ 1

In general, if we combine Formula 2 with the Chain Rule as in Example 1, we get

d 1 du d g'(x)
L ey 2 =n e N
Dj dx L u dx of dx [in g(x)] g(x)
., d 3
EXAMPLE 2 Find — In(sin x).
dx
SOLUTION Using (3), we have
d In(sin x) L 4 (sin x) ! co ot [0
— nx) = — = X =
dx sin x dx % sin x s oL

EXAMPLE 3 Differentiate f(x) = +/In x.
SOLUTION This time the logarithm is the inner function, so the Chain Rule gives
1 1

d 1
' I 1 = 1 — « — = BB
f1@) =20 x) dx (o) 2/Inx x  2x+4/Inx

EXAMPLE 4 Differentiating a logarithm with base 10  Differentiate f(x) = logo(2 + sin x).
SOLUTION Using Formula 1 with a = 10, we have

d
flx) = Elogm& + sin x)

| ZAP
e e in
(2 + sinx) In 10 dx ML

cos x —
— pE
(2 + sinx) In 10

Figure 1 shows the graph of the function f

of Example 5 together with the graph of its d x+1
derivative. It gives a visual check on our calcula- EXAMPLE5 Simplifying before differentiating Find —— In ———.
tion. Notice that f'(x) is large negative when f dx x =2
is rapidly decreasing. SOLUTION 1

d X+ 1 1 d x+1

Yy —1 — i
L—// dxn\/x—-Z x+1 dx Jx—2
! Vx =2

V=2 i1 = @ D) 2

0 X x+1 x—2
f _x—2—%(x+1)
x+ Dx—-2)
x =35

FIGURE 1 2(x + 1)(x — 2)



Figure 2 shows the graph of the function

fx) =In | x| in Example 6 and its derivative
f'x) = 1/x. Notice that when x is small, the
graph of y = In|x | is steep and so f*(x) is
large (positive or negative).

FIGURE 2
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SOLUTION 2 If we first simplify the given function using the laws of logarithms, then the
differentiation becomes easier:

d x+1 d
— In———=—[In(x + 1) = In(x - 2
o =y = - [InGe + 1) = 3 In(x - 2)]

IR S N
x+1 2\ % —12

(This answer can be left as written, but if we used a common denominator we would see
that it gives the same answer as in Solution 1.)

M EXAMPLEG Find f'(x) if f(x) = In|x|.
SOLUTION Since

In x if x>0
o) = {ln(—x) if x<0

it follows that

— if x>0

109 = 1
me(=]) == iF 2<L0
-X X

Thus f'(x) = 1/x for all x #~ 0. . i

The result of Example 6 is worth remembering:

[4] < lnfx| =+
dx X

Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or
powers can often be simplified by taking logarithms. The method used in the following
example is called logarithmic differentiation.

X x? + 1

EXAMPLE 7 Logarithmic differentiation Differentiate y = Gx + )
%

SOLUTION We take logarithms of both sides of the equation and use the Laws of Loga-
rithms to simplify:

Iny=2Inx+ 3In(x>+ 1) — 5In(3x + 2)

Differentiating implicitly with respect to x gives

2x _s 3
x4+ 1 3x + 2

3 1 1
__:—.——+—.
4 x 2
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Solving for dy/dx, we get

dy 3 X 15

—_— y — + 5 —

dx 4x x°+1 3x 12
If we hadn't used logarithmic differentiationin ~ Because we have an explicit expression for y, we can substitute and write
Example 7, we would have had to use both the

Quotient Rule and the Product Rule. The result- dy x3/4\/x—21_1< 3 + X 15 >

ing calculation would have been horrendous. = MmN — EE
dx Bx+2)5 \4x x*+1 3x+2 '

Steps in Logarithmic Differentiation

1. Take natural logarithms of both sides of an equation y = f(x) and use the Laws
of Logarithms to simplify.

2. Differentiate implicitly with respect to x.
3. Solve the resulting equation for y'.

If f(x) <0 for some values of x, then In f(x) is not defined, but we can write
|y| = | £(x) | and use Equation 4. We illustrate this procedure by proving the general ver-
sion of the Power Rule, as promised in Section 3.1.

The Power Rule If n is any real number and f(x) = x", then

£ = nx

PROOF Let y = x" and use logarithmic differentiation:
If x = 0, we can show that £'(0) = 0 for

e j ; J——
n > 1 directly from the definition of a Inly|=In|x|"=nln|x|] x#0
derivative. , "
Therefore Pl
y X
xn
Hence y =n L pd = gy —
x X

B  You should distinguish carefully between the Power Rule [(x")" = nx""1], where the
base is variable and the exponent is constant, and the rule for differentiating exponential
functions [(a*)’ = a” In a], where the base is constant and the exponent is variable.

In general there are four cases for exponents and bases:

d
1. —(@®) =0 (a and b are constants)
dx
d _
2 — [£(0)]) = bLF()]f'(x)
x

d
3. = [a%9] = a*(In a)g'(x)

4. To find (d/dx)[ f(x)]?¥, logarithmic differentiation can be used, as in the next
example.



Figure 3 illustrates Example 8 by showing the

graphs of £ (x) = x¥*and its derivative.

y

FIG

FIG

URE 3
; Y
|
: &3
— 4 1/x
} g | S, 2= (1 T2)

N i {l_ 1 ___________
i 0 %
|

URE 4

X 1+ x)*

0.1 2.59374246
0.01 2.70481383
0.001 2.71692393
0.0001 2.71814593
0.00001 2.71826824
0.000001 2.71828047
0.0000001 2.71828169
0.00000001 2.71828181
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I1 EXAMPLES What to do if both base and exponent containx  Differentiate y = xv*,

SOLUTION 1 Using logarithmic differentiation, we have

Iny=Inx"=./x Inx
¢ 1 1

Yy _ L o
—y—_\/; x+(ln)2\/;

, 1 4 Inx a2t Inx
gl e g SRR Y ol 2 B
PN T 2 2Jx

SOLUTION 2 Another method is to write x¥* = (en*)¥*:

d d d
() = & (,Vrnx — ,VJalx
() = () = e (I
- 2+ Inx WP
__‘"‘2\/; (as in Solution 1) s

The Number ¢ as a Limit

We have shown that if f(x) = In x, then f'(x) = 1/x. Thus f'(1) = 1. We now use this fact
to express the number e as a limit.
From the definition of a derivative as a limit, we have

— x—0 X

Tl & ) — i 1
i L oIl lim = In(1 + x)
x—0 % x—0 x

= hrr(l) In(1 + x)*
Because f'(1) = 1, we have
Iing In(1 + x)'* =1
Then, by Theorem 2.4.8 and the continuity of the exponential function, we have

imy 1/x . 1/x s
e = el o ehm*..gln(l+x) = lim elu(l-}»x) = lim (1 KE x)l/x
x—0

x—0

E] e = lirré (1 + x)V*

Formula 5 is illustrated by the graph of the function y = (1 + x)* in Figure 4 and a
table of values for small values of x. This illustrates the fact that, correct to seven decimal
places,

e~ 27182818



226 CHAPTER 3 DIFFERENTIATION RULES

If we put n = 1/x in Formula 5, then n — o as x — 0" and so an alternative expression

for e is

(6]

e = lim

n—o

(o3

mercises

=)

1. Explain why the natural logarithmic function y = In x is used

much more frequently in calculus than the other logarithmic
functions y = log, x.

2-20 Differentiate the function.
2 f(x) =xlnx — x

3. f(x) = sin(ln x) 4. f(x) = In(sin*x)
5. f(x) = log>(1 — 3x) 6. f(x) = logs(xe")
1. f(x) = JInx 8 f(x) =In I
1+ Int
9. £(x) = sinx In(5x) M. ) =
1 —Int
2t + 1)
M. F@) = lnm 12. h(x) = In(x + Vx> = 1)
13. g(x) = ln(x«/x2 = 1) 14. F(y) =yIn(l + )
a? — 22
15 y=1In |2 — x — 5x° 16. =1
5. y=1In|2 — x — 5x? H(z) = In o
17. y = In(e™ + xe™) 18. y = [In(1 + ¢)]?
19. y = 2x logio/x 20. y = loga(e *cos mx)
21-22 Find y' and y".
2 1
21. y = x* In(2x) 2 y=—-
x

28.

1 30

Find equations of the tangent lines to the curve y = (In x)/x at
the points (1, 0) and (e, 1/e). Illustrate by graphing the curve
and its tangent lines.

. (a) On what interval is f(x) = x In x decreasing?
(b) On what interval is f concave upward?

. If f(x) = sin x + In x, find f'(x). Check that your answer is
reasonable by comparing the graphs of f and f'.

31. Let f(x) = cx + In(cos x). For what value of c is f'(7/4) = 67

32

. Let f(x) = log,(3x* — 2). For what value of a is f'(1) = 3?

33-42 Use logarithmic differentiation to find the derivative of the

23-24 Differentiate f and find the domain of f.

X

P s 24, =Inlnl
G D) f(x) =Inlnln x

23, f(x) =

25-27 Find an equation of the tangent line to the curve at the given

point.

25. y = In(x* — 3x + 1),
26. y=1n(x*—7), (2,0)
21. y = In(xe¥), (1,1)

(3,0)

function.
33y = (2x + 1)°(x* - 3)° 3, y=+x X (x2+ 1)°
5 7 sin’x tan’x — 2+ 1
RN TN
37. y=x" 38 y = x"
39. y = (cos x)" 4. y = Jx*
M. y = (tan x)'/* 42, y = (sin x)"*
43. Find y' if y = In(x? + y?).
44, Find y' if x* = y*~.
45, Find a formula for f™(x) if £(x) = In(x — 1).
d9

46. Find 7 (x%1In x).
47. Use the definition of derivative to prove that

o In(1 +x)

im——— =1

x—0 X
48. Show that lim <1 + i) = ¢* for any x > 0.

n

n—"s

Sl
K]

Graphing calculator or computer with graphing software required

1. Homework Hints available in TEC
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m Maximum and Minimum Values 1

Some of the most important applications of differential calculus are optimization prob-
lems, in which we are required to find the optimal (best) way of doing something. Here are
examples of such problems that we will solve in this chapter:

m What is the shape of a can that minimizes manufacturing costs?

® What is the maximum acceleration of a space shuttle? (This is an important
question to the astronauts who have to withstand the effects of acceleration.)

m What is the radius of a contracted windpipe that expels air most rapidly during
a cough?

= At what angle should blood vessels branch so as to minimize the energy expended
by the heart in pumping blood?

These problems can be reduced to finding the maximum or minimum values of a function.
Let’s first explain exactly what we mean by maximum and minimum values.
We see that the highest point on the graph of the function f shown in Figure 1 is the

y point (3, 5). In other words, the largest value of f'is f(3) = 5. Likewise, the smallest value
is £(6) = 2. We say that f(3) = 5 is the absolute maximum of f and f(6) = 2 is the abso-
4 \ lute minimum. In general, we use the following definition.
2
EI Definition Let ¢ be a number in the domain D of a function f. Then f(c) is the

0 2 0 6 1 m absolute maximum value of fon D if f(c) = f(x) for all x in D.

m absolute minimum value of fon D if f(c) < f(x) for all x in D.

FIGURE 1




fla) E |
/a 0] » ¢ d e X
FIGURE 2

Abs min f(a), abs max f(d)
Joc min f(C) ) f(@), loc max f(b)’ f(d)

¥
i loc
/I"\ and

6T ‘ - OC . abs
4" P o max  _ min

r loc ;

1 min N
2_.

3 I J K
o 4 8 12 «x
FIGURE 3

FIGURE 4
Minimum value 0, no maximum

FIGURE 5
No minimum, no maximum
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An absolute maximum or minimum is sometimes called a global maximum or mini-
mum. The maximum and minimum values of f are called extreme values of I

Figure 2 shows the graph of a function f with absolute maximum at d and absolute
minimum at a. Note that (d, f()) is the highest point on the graph and (a, £(a)) is the low-
est point. In Figure 2, if we consider only values of x near b [for instance, if we restrict our
attention to the interval (a, c)], then £(b) is the largest of those values of J(x) and is called
a local maximum value of f. Likewise, f(c) is called a local minimum value of S because
f(c) < f(x) for x near c [in the interval (b, d), for instance]. The function f also has a local
minimum at e. In general, we have the following definition.

[2] Definition The number f(c) is a

® local maximum value of fif f(c) = f(x) when x is near c.

u local minimum value of fif f(c) < f(x) when x is near c.

In Definition 2 (and elsewhere), if we say that something is true near ¢, we mean that
it is true on some open interval containing c. For instance, in Figure 3 we see that f(4) = 5
is a local minimum because it’s the smallest value of Sfon the interval 1. It’s not the absolute
minimum because f(x) takes smaller values when x is near 12 (in the interval K, for
instance). In fact f(12) = 3 is both a local minimum and the absolute minimum. Simi-
larly, £(8) = 7 is a local maximum, but not the absolute maximum because S takes larger
values near 1.

EXAMPLE 1 A function with infinitely many extreme values

The function f(x) = cos x takes on its (local and absolute) maximum value of 1 infi-
nitely many times, since cos 2nar = 1 for any integer n and —1 < cos x < 1 for all x.
Likewise, cos(2n + )7 = —1is its minimum value, where 7 is any integer. |

EXAMPLE 2 A function with a minimum value hut no maximum value

If f(x) = x? then f(x) = f(0) because x> = 0 for all x. Therefore S(0) = 01is the
absolute (and local) minimum value of f. This corresponds to the fact that the origin is
the lowest point on the parabola y = x2 (See Figure 4.) However, there is no highest
point on the parabola and so this function has no maximum value.

EXAMPLE 3 A function with no maximum or minimum  From the graph of the function
J(x) = x*, shown in Figure 5, we see that this function has neither an absolute maximum
value nor an absolute minimum value. In fact, it has no local extreme values either.

I EXAMPLE4 A maximum at an endpoint The graph of the function

S(x) = 3x* — 16x> + 18x? —1<x<4
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y
(—1,37) y=3x*—16x>+18x?
1,5)
-1 1 \2 45
(3,—27)
FIGURE 6
FIGURE 7

is shown in Figure 6. You can see that f(1) = 5 is a local maximum, whereas the
absolute maximum is f(—1) = 37. (This absolute maximum is not a local maximum

because it occurs at an endpoint.) Also, f(0) = 0 is a local minimum and f(3) = —271is
both a local and an absolute minimum. Note that f has neither a local nor an absolute
maximum at x = 4. Eeng

We have seen that some functions have extreme values, whereas others do not. The
following theorem gives conditions under which a function is guaranteed to possess
extreme values.

@ The Extreme Value Theorem If f is continuous on a closed interval [a, b], then
fattains an absolute maximum value f(c) and an absolute minimum value f (d) at
some numbers ¢ and d in [a, b].

The Extreme Value Theorem is illustrated in Figure 7. Note that an extreme value can
be taken on more than once. Although the Extreme Value Theorem is intuitively very plau-
sible, it is difficult to prove and so we omit the proof.

!
c

. |
Olc‘z db x 0|('zc d=b x Olézcldcsz

Figures 8 and 9 show that a function need not possess extreme values if either hypoth-
esis (continuity or closed interval) is omitted from the Extreme Value Theorem.

y y |
3+ |
{
|
|
|
14 1 [
|
!
0 ' 2 x 0 ) x
FIGURE 8 FIGURE 9

This continuous function g has
no maximum or minimum.

This function has minimum value
f(2) = 0, but no maximum value.

The function f whose graph is shown in Figure 8 is defined on the closed interval [0, 2]
but has no maximum value. [Notice that the range of fis [0, 3). The function takes on val-
ues arbitrarily close to 3, but never actually attains the value 3.] This does not contradict
the Extreme Value Theorem because f is not continuous. [Nonetheless, a discontinuous
function could have maximum and minimum values. See Exercise 13(b).]

The function g shown in Figure 9 is continuous on the open interval (0, 2) but has nei-
ther a maximum nor a minimum value. [The range of g is (1, ®). The function takes on
arbitrarily large values.] This does not contradict the Extreme Value Theorem because the
interval (0, 2) is not closed.



FIGURE 10

Fermat

Fermat's Theorem is named after Pierre Fermat .
(1601-1665), a French lawyer who took up
mathematics as a hobby. Despite his amateur
status, Fermat was one of the two inventors of
analytic geometry (Descartes was the other).

His methods for finding tangents to curves and
maximum and minimum values (before the
invention of limits and derivatives) made him a
forerunner of Newton in the creation of differ-
ential calculus.
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The Extreme Value Theorem says that a continuous function on a closed interval has a
maximum value and a minimum value, but it does not tell us how to find these extreme
values. We start by looking for local extreme values.

Figure 10 shows the graph of a function f with a local maximum at ¢ and a local
minimum at d. It appears that at the maximum and minimum points the tangent lines are
horizontal and therefore each has slope 0. We know that the derivative is the slope of the
tangent line, so it appears that f'(c) = 0 and f'(d) = 0. The following theorem says that
this is always true for differentiable functions.

y
(e, f(e)
(d f(d)
0 c d X

E] Fermat's Theorem If f has a local maximum or minimum at ¢, and if f'(c)
exists, then f'(c) = 0.

Our intuition suggests that Fermat’s Theorem is true. A rigorous proof, using the defi-
nition of a derivative, is given in Appendix E.

Although Fermat’s Theorem is very useful, we have to guard against reading too much
into it. If f(x) = x>, then f'(x) = 3x2, so f'(0) = 0. But f has no maximum or minimum
at 0, as you can see from its graph in Figure 11. The fact that f'(0) = 0 simply means that
the curve y = x* has a horizontal tangent at (0, 0). Instead of having a maximum or min-
imum at (0, 0), the curve crosses its horizontal tangent there.

Thus, when f'(c) = 0, f doesn’t necessarily have a maximum or minimum at ¢. (In
other words, the converse of Fermat’s Theorem is false in general.)

y D
y=x
y= x|
0 X 0 X
FIGURE 11 FIGURE 12
If f(x)= x> then f(0) =0 but f If f(x)=|x], then f(0)=0is a
has no maximum or minimum. minimum value, but f/(0) does not exist.

We should bear in mind that there may be an extreme value where f'(c) does not exist.
For instance, the function f(x) = | x| has its (local and absolute) minimum value at 0 (see
Figure 12), but that value cannot be found by setting f”(x) = 0 because, as was shown in
Example 6 in Section 2.7, f'(0) does not exist.

Fermat’s Theorem does suggest that we should at least szart looking for extreme values
of f at the numbers ¢ where f'(c) = 0 or where f'(c) does not exist. Such numbers are
given a special name.
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Figure 13 shows a graph of the function f

in Example 5. It supports our answer because
there is a horizontal tangent when x = 1.5
and a vertical tangent when x = 0.

3.5

W

A

=2

FIGURE 13

We can estimate maximum and minimum val-
ues very easily using a graphing calculator or
a computer with graphing software. But, as
Example 6 shows, calculus is needed to find
the exact values.

— T 0

] 27

Z

FIGURE 14

E] Definition A critical number of a function f is a number ¢ in the domain of
£ such that either f'(c) = 0 or f'(c) does not exist.

EXAMPLE5 Find the critical numbers of f(x) = x*°(4 — x).
SOLUTION The Product Rule gives

34 —
Fiix) = x¥(=1) + x4 — x) = —x¥° + (42@
5x%/3
_ “5x+3@4-x) 12— 8
N 5x%° TS

[The same result could be obtained by ﬁrst writing f(x) = 4x*° — x%5.] Therefore
f'(x) =0if 12 — 8x = 0, that is, x = 3, and f’(x) does not exist when x = 0. Thus the
critical numbers are 3 and 0. T

In terms of critical numbers, Fermat’s Theorem can be rephrased as follows (compare
Definition 5 with Theorem 4):

@ If £ has a local maximum or minimum at ¢, then ¢ is a critical number of f.

To find an absolute maximum or minimum of a continuous function on a closed interval,
we note that either it is local [in which case it occurs at a critical number by (6)] or it occurs
at an endpoint of the interval. Thus the following three-step procedure always works.

The Closed Interval Method To find the absolute maximum and minimum values of
a continuous function f on a closed interval [a, b]:

1. Find the values of f at the critical numbers of f in (a, b).
2. Find the values of f at the endpoints of the interval.

3. The largest of the values from Steps 1 and 2 is the absolute maximum value;
the smallest of these values is the absolute minimum value.

EXAMPLE 6 Finding extreme values on a closed interval

(a) Use a graphing device to estimate the absolute minimum and maximum values of
the function f(x) = x — 2sinx, 0 < x < 2.

(b) Use calculus to find the exact minimum and maximum values.

SOLUTION

(a) Figure 14 shows a graph of f in the viewing rectangle [0, 277] by [—1, 8]. By mov-
ing the cursor close to the maximum point, we see that the y-coordinates don’t change
very much in the vicinity of the maximum. The absolute maximum value is about 6.97
and it occurs when x ~ 5.2. Similarly, by moving the cursor close to the minimum point,
we see that the absolute minimum value is about —0.68 and it occurs when x = 1.0. It is
possible to get more accurate estimates by zooming in toward the maximum and mini-
mum points, but instead let’s use calculus.
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(b) The function f(x) = x — 2 sin x is continuous on [0, 277]. Since f'(x) = 1 — 2 cos x,
we have f'(x) = 0 when cos x = 5 and this occurs when x = /3 or 57/3. The values
of f at these critical numbers are

ﬂw$=%~2mg:§¥-3z—%mm3

Sar S5 Sar ‘
— —2sin—=—+ /3 = 6. 3
3 sin 3 3 968039

and f(5m/3) =
The values of f at the endpoints are
f0)=0 and fQm) =27 =~ 6.28

Comparing these four numbers and using the Closed Interval Method, we see that the
absolute minimum value is f(7/3) = 7/3 — /3 and the absolute maximum value is
f(57/3) = 5m/3 + /3. The values from part (a) serve as a check on our work.  Fmm

EXAMPLE7 The Hubble Space Telescope was deployed on April 24, 1990, by the space
shuttle Discovery. A model for the velocity of the shuttle during this mission, from liftoff
at ¢ = 0 until the solid rocket boosters were jettisoned at = 126 s, is given by

v(f) = 0.001302¢* — 0.09029¢* + 23.61¢ — 3.083

(in feet per second). Using this model, estimate the absolute maximum and minimum
values of the acceleration of the shuttle between liftoff and the jettisoning of the boosters.

SOLUTION We are asked for the extreme values not of the given velocity function, but
rather of the acceleration function. So we first need to differentiate to find the acceleration:

d
a(t) = v'(s) = (0.001302¢* — 0.09029¢% + 23.61¢ — 3.083)

= 0.003906¢* — 0.18058¢ + 23.61

We now apply the Closed Interval Method to the continuous function a on the interval
0 =t =< 126. Its derivative is

a'(t) = 0.007812¢ — 0.18058

The only critical number occurs when a'() = 0:

0.18058

e )31
0.007812

Iy
Evaluating a(¢) at the critical number and at the endpoints, we have
a(0) = 23.61 a(n) =~ 21.52 a(126) =~ 62.87

So the maximum acceleration is about 62.87 ft/s*> and the minimum acceleration is
about 21.52 ft/s%.
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m Exercises

N

1. Explain the difference between an absolute minimum and a
local minimum.

2. Suppose [ is a continuous function defined on a closed
interval [a, b].
(a) What theorem guarantees the existence of an absolute max-
imum value and an absolute minimum value for f?
(b) What steps would you take to find those maximum and
minimum values?

3-4 For each of the numbers a, b, ¢, d, r, and s, state whether the
function whose graph is shown has an absolute maximum or min-
imum, a local maximum or minimum, or neither a maximum

nor a minimum.

3.y

5-6 Use the graph to state the absolute and local maximum and
minimum values of the function.

5.y 6.

7-10 Sketch the graph of a function f that is continuous on
[1, 5] and has the given properties.

7. Absolute minimum at 2, absolute maximum at 3,
local minimum at 4 :

8. Absolute minimum at 1, absolute maximum at 5,

(b) Sketch the graph of a function that has a local maximum
at 2 and is continuous but not differentiable at 2.

(c) Sketch the graph of a function that has a local maximum
at 2 and is not continuous at 2.

12. (a) Sketch the graph of a function on [—1, 2] that has an
absolute maximum but no local maximum.
(b) Sketch the graph of a function on [—1, 2] that has a local
maximum but no absolute maximum.

13. (a) Sketch the graph of a function on [—1, 2] that has an
absolute maximum but no absolute minimum.
(b) Sketch the graph of a function on [—1, 2] that is discontin-
uous but has both an absolute maximum and an absolute
minimum.

14. (a) Sketch the graph of a function that has two local maxima,
one local minimum, and no absolute minimum.
(b) Sketch the graph of a function that has three local minima,
two local maxima, and seven critical numbers.

15-22 Sketch the graph of f by hand and use your sketch to
find the absolute and local maximum and minimum values of f.
(Use the graphs and transformations of Sections 1.2 and 1.3.)

15 f(x) =3Bx— 1), x<3

16. f(x) =2 —3x, x=—2
17. f(x) =x% 0<x<2
18. f(x) = e*
19. f(x) =Inx, 0<x<2
20. f(t) = cost, —3m/2<1<37/2
2. f(x)=1-x
4—x* if —2=<x<0
Zz'f(x):{zx—l if0<x<2

23-38 Find the critical numbers of the function.
2. f(x) =4 + 5x — 3x° 2. f(x) = x>+ 6x* — 15x

25, f(x) = x* + 3x* — 24x 2. f(x)=x*+x+x

' - 27. s(f) = 3t* + 413 — 61* 28. g() = |3t — 4|
local maximum at 2, local minimum at 4
-1 =1
9. Absolute maximum at 5, absolute minimum at 2, 29. g(y) = “2—{—_;—1 30. a(p) = P2 )
local maximum at 3, local minima at 2 and 4 F ¢ P
3. k() = ¥4 — 214 32 g(x) = x'P — x?"
10. f has no local maximum or minimum, but 2 and 4 are critical
numlsers 3. F(x) = x"(x — 4)° 34. g(0) = 460 — tan 0
35. £(0) = 2 cos 0 + sin*0 36. h(r) = 3t — arcsin ¢
11. (a) Sketch the g}'aph of.a function that has a local maximum 37, f(x) = x% ™ 38, f(x) = x2lnx
at 2 and is differentiable at 2. _ R -
A Graphing calculator or computer with graphing software required 1. Homework Hints available in TEC



@ 39-40 A formula for the derivative of a function f is given. How
many critical numbers does f have?

39, f'(x) = 5e ®¥lsinx — 1

20, F() = 100 cos®x i
ST 0+ 8

41-54 Find the absolute maximum and absolute minimum values
of f on the given interval.

M. f(x) =12 + 4x — x?,
42. f(x) =5 + 54x — 2x°,

[0, 5]
[0, 4]

43, f(x) =2x* = 3x* — 12x + 1, [-2,3]
4. f(x) =x*—6x*+9x +2, [—1,4]
85. f(x) = x* —2x*> + 3, [—2,3]
6. f(x) = (x* — 1)°, [-1,2]
a1, f(1) = t/4 — 12, [—1,2]
x*—4
8. f() =5 [-4.4]
89, f(x) = xe™”8, [—1,4]
50. f(x) =x — Inx, [%, 2]
51 f(x) = In(x* + x + 1), [—1,1]
52. f(x) = x — 2tan"'x, [0, 4]
§3. f(t) = 2cost + sin2t, [0, 7/2]
54, f(t) =t + cot(t/2), [m/4, Tmw/4]

55. If a and b are positive numbers, find the maximum value

of f(x) =x(1 —x)b,0s<x=<1.

56. Use a graph to estimate the critical numbers of

f(x) = |x* = 3x> + 2| correct to one decimal place.

57-60
(a) Use a graph to estimate the absolute maximum and minimum

values of the function to two decimal places.

(b) Use calculus to find the exact maximum and minimum values.

5. f(x) =x*—x*+2, —-1sx<1
8, f(x) =¢* %, —1<x<0
59, f(x) = x/x — x?

60. f(x) =x—2cosx, —2<x=<0

61. Between 0°C and 30°C, the volume V (in cubic centimeters)

of 1 kg of water at a temperature 7" is given approximately by
the formula

V = 999.87 — 0.06426T + 0.00850437'* — 0.00006797

Find the temperature at which water has its maximum
density.

62.

63.

64.
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An object with weight W is dragged along a horizontal plane
by a force acting along a rope attached to the object. If the
rope makes an angle 6 with the plane, then the magnitude of
the force is

s wW
o sin O + cos 6

where u is a positive constant called the coefficient of friction
and where 0 < 0 < /2. Show that F is minimized when
tan 0 = u.

A model for the US average price ofa pound of white sugar
from 1993 to 2003 is given by the function

S(£) = —0.00003237¢° + 0.0009037¢* — 0.008956¢°
+ 0.03629¢* — 0.04458¢ + 0.4074

where ¢ is measured in years since August of 1993. Estimate
the times when sugar was cheapest and most expensive dur-
ing the period 1993-2003.

On May 7, 1992, the space shuttle Endeavour was launched
on mission STS-49, the purpose of which was to install a
new perigee kick motor in an Intelsat communications satel-
lite. The table gives the velocity data for the shuttle between
liftoff and the jettisoning of the solid rocket boosters.

Event Time (s) Velocity (ft/s)
Launch 0 0
Begin roll maneuver 10 185
End roll maneuver 15 319
Throttle to 89% 20 447
Throttle to 67% 32 742
Throttle to 104% 59 1325
Maximum dynamic pressure 62 1445
Solid rocket booster separation 125 4151

65.

(a) Use a graphing calculator or computer to find the cubic
polynomial that best models the velocity of the shuttle for
the time interval ¢ € [0, 125]. Then graph this polynomial.

(b) Find a model for the acceleration of the shuttle and use it
to estimate the maximum and minimum values of the
acceleration during the first 125 seconds.

When a foreign object lodged in the trachea (windpipe)
forces a person to cough, the diaphragm thrusts upward caus-
ing an increase in pressure in the lungs. This is accompanied
by a contraction of the trachea, making a narrower channel
for the expelled air to flow through. For a given amount of air
to escape in a fixed time, it must move faster through the nar-
rower channel than the wider one. The greater the velocity of
the airstream, the greater the force on the foreign object.

X rays show that the radius of the circular tracheal tube con-
tracts to about two-thirds of its normal radius during a cough.
According to a mathematical model of coughing, the velocity
v of the airstream is related to the radius r of the trachea by
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m Optimization Problems

Pps!

The methods we have learned in this chapter for finding extreme values have practical
applications in many areas of life. A businessperson wants to minimize costs and maxi-
mize profits. A traveler wants to minimize transportation time. Fermat’s Principle in optics
states that light follows the path that takes the least time. In this section and the next we
solve such problems as maximizing areas, volumes, and profits and minimizing distances,
times, and costs.

In solving such practical problems the greatest challenge is often to convert the word
problem into a mathematical optimization problem by setting up the function that is to be
maximized or minimized. Let’s recall the problem-solving principles discussed on page 83
and adapt them to this situation:

Steps in Solving Optimization Problems

1. Understand the Problem The first step is to read the problem carefully until it is
clearly understood. Ask yourself: What is the unknown? What are the given
quantities? What are the given conditions?

2. Draw a Diagram In most problems it is useful to draw a diagram and identify
the given and required quantities on the diagram.

3. Introduce Notation Assign a symbol to the quantity that is to be maximized or
minimized (let’s call it O for now). Also select symbols (a, b, c, .. ., x, y) for
other unknown quantities and label the diagram with these symbols. It may help
to use initials as suggestive symbols—for example, A for area, 4 for height, ¢ for
time.
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PS' Understand the problem
Analogy: Try special cases
PS: Draw diagrams

Area =100 - 2200 = 220,000 ft*

FIGURE 1

PS Introduce notation

FIGURE 2

4 EXPI'CSS Q in terms of some of the other symbo!é from Ste"p 3

AR o et

; say, Q= f (x) Wnte the domam of thls funcuon

6. Use the methods of Sectxons 4 2 and 4. 3 to ﬁnd the absol e
mum value of f. In partlcular, if the domain of f is a clo
Closed Ipterva] Method in Section 4.2 can be used.

'EXAMPLE 1 Maximizing area A farmer has 2400 ft of fencing and wants to fence off a
rectangular field that borders a straight river. He needs no fence along the river. What are
the dimensions of the field that has the largest area?

SOLUTION In order to get a feeling for what is happening in this problem, let’s experi-
ment with some special cases. Figure 1 (not to scale) shows three possible ways of
laying out the 2400 ft of fencing.

Area =700 - 1000 = 700,000 ft* Area = 1000 - 400 = 400,000 ft*

We see that when we try shallow, wide fields or deep, narrow fields, we get relatively
small areas. It seems plausible that there is some intermediate configuration that pro-
duces the largest area.

Figure 2 illustrates the general case. We wish to maximize the area A of the rectangle.
Let x and y be the depth and width of the rectangle (in feet). Then we express A in terms
of x and y:

A =xy

We want to express A as a function of just one variable, so we eliminate y by expressing
it in terms of x. To do this we use the given information that the total length of the fenc-
ing is 2400 ft. Thus

2x + y = 2400
From this equation we have y = 2400 — 2x, which gives
A = x(2400 — 2x) = 2400x — 2x>
Note that x = 0 and x < 1200 (otherwise A < 0). So t‘he function that we wish to maxi-
mize is

A(x) = 2400x — 2x* 0= x=1200
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The derivative is A'(x) = 2400 — 4x, so to find the critical numbers we solve the
equation
2400 — 4x =0

which gives x = 600. The maximum value of A must occur either at this critical number
or at an endpoint of the interval. Since A(0) = 0, A(600) = 720,000, and A(1200) = 0,
the Closed Interval Method gives the maximum value as A(600) = 720,000.
[Alternatively, we could have observed that A"(x) = —4 < 0 for all x, so A is always
concave downward and the local maximum at x = 600 must be an absolute maximum.]
Thus the rectangular field should be 600 ft deep and 1200 ft wide. w=

Il EXAMPLE2 Minimizing cost A cylindrical can is to be made to hold 1 L of oil. Find
the dimensions that will minimize the cost of the metal to manufacture the can.

SOLUTION Draw the diagram as in Figure 3, where r is the radius and 4 the height (both
in centimeters). In order to minimize the cost of the metal, we minimize the total surface
area of the cylinder (top, bottom, and sides). From Figure 4 we see that the sides are
made from a rectangular sheet with dimensions 277 and 4. So the surface area is

A =27t + 27rh

To eliminate & we use the fact that the volume is given as 1 L, which we take to be
1000 cm®. Thus

¢ I 7rr*h = 1000
& 5 -
which gives & = 1000/(rr*). Substitution of this into the expression for A gives
1000 2000
A=27Tr2+271'r< 2>=2'n'r2+—.-
ar r
@ P Therefore the function that we want to minimize is
Area 2(7rr?) Area (2arr)h 2000
— 2 [ER———
b\GURE 4 A@r) = 27r* + r r>0

To find the critical numbers, we differentiate:

2000 4(7rr® — 500
Alr) =4mr — —— = e 5 )
r r

In the Applied Project on page 311 we investi- ~ Then A’(r) = 0 when 777 = 500, so the only critical number is » = /500/ .

?:;e the most economical shape for a can by Since the domain of A is (0, ), we can’t use the argument of Example 1 concerning
Mg into account other manufacturing Costs. oy 4nings. But we can observe that A'(r) < 0 for r < 3/500/7 and A'(r) > 0 for

r > 3/500/ , so A is decreasing for all r to the left of the critical number and increas-

y
ing for all r to the right. Thus r = </500/7r must give rise to an absolute minimum.
[Alternatively, we could argue that A(r) — % as r — 0" and A(r) —> ® as r — ®, 50
1 there must be a minimum value of A(r), which must occur at the critical number. See
00 y=Al) Figure 5.]
The value of & corresponding to r = </500/ 7 is
1000 1000 500
T e h = 2 2/3223—22”
0 0 > Tr w(500/m)"° T
FIGURE Thus, to minimize the cost of the can, the radius should be </500/7 cm and the height

should be equal to twice the radius, namely, the diameter.
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Module 4.6 takes you through six addi-
tional optimization problems, including animations
of the physical situations.

y
2=
o (4) y=2x
1 ()
ON1 2 3 4 x
FIGURE 6

Note 1: The argument used in Example 2 to justify the absolute minimum is a variang
of the First Derivative Test (which applies only to /ocal maximum or minimum values) ang
is stated here for future reference.

First Derivative Test for Absolute Extreme Values Suppose that ¢ is a critical number of

a continuous function f defined on an interval.

(a) If f'(x) > 0 for all x < ¢ and f'(x) < 0 for all x > c, then f(c) is the absolute
maximum value of f.

(b) If f'(x) < 0forall x < ¢ and f’(x) > 0 for all x > c, then f(c) is the absolute
minimum value of f.

Note 2: An alternative method for solving optimization problems is to use implicit dif-
ferentiation. Let’s look at Example 2 again to illustrate the method. We work with the same
equations

A = 2mr* + 27rh arr*h = 1000
but instead of eliminating /, we differentiate both equations implicitly with respect to »
A = 4qr + 2wh + 2arh’ 2arh + wr*h’ =0

The minimum occurs at a critical number, so we set A' = 0, simplify, and arrive at the
equations
2r+h+rh' =0 2h +rh' =0

and subtraction gives 2r — h = 0, or h = 2r.

i1 EXAMPLE3 Find the point on the parabola y* = 2x that is closest to the point (1, 4).
SOLUTION The distance between the point (1, 4) and the point (x, y) is

d=JG=IF+ (=47

(See Figure 6.) But if (x, y) lies on the parabola, then x = 12, so the expression for d
becomes

d=(Gy =10+ (y— 47

(Alternatively, we could have substituted y = +/2x to get d in terms of x alone.) Instead
of minimizing d, we minimize its square:

P=fy) =Gy - 1)+ (y — 47

(You should convince yourself that the minimum of d occurs at the same point as the
minimum of d?, but d? is easier to work with.) Differentiating, we obtain

FO) =20y —1)y+2(y -4 =»"—38

so f'(y) = 0 when y = 2. Observe that f'(y) < 0 when y < 2 and f'(y) > 0 when

y > 2, so by the First Derivative Test for Absolute Extreme Values, the absolute mini-
mum occurs when y = 2. (Or we could simply say that because of the geometric nature
of the problem, it’s obvious that there is a closest point but not a farthest point.) The
corresponding value of x is x = 5y% = 2. Thus the point on y? = 2x closest to (1, 4)

is (2, 2). foeonl
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EXAMPLE 4 Minimizing time A man launches his boat from point A on a bank of a
straight river, 3 km wide, and wants to reach point B, 8§ km downstream on the opposite
bank, as quickly as possible (see Figure 7). He could row his boat directly across the
river to point C and then run to B, or he could row directly to B, or he could row to some
point D between C and B and then run to B. If he can row 6 km/h and run 8 km/h,
where should he land to reach B as soon as possible? (We assume that the speed of the
water is negligible compared with the speed at which the man rows.)

SOLUTION If we let x be the distance from C to D, then the running distance is
| DB| = 8 — x and the Pythagorean Theorem gives the rowing distance as
|AD| = /x* + 9. We use the equation

. distance
time = ——
rate

Then the rowing time is +/x? + 9/6 and the running time is (8 — x)/8, so the total time

T as a function of x is
Vx4 9 8 —x
T(x) = +
) 6 8

The domain of this function 7 is [0, 8]. Notice that if x = 0, he rows to C and if x = 8,
he rows directly to B. The derivative of 7" is

T'(x) = — e —

1
6+/x*+ 9 §

Thus, using the fact that x = 0, we have

X i
-_— e — — 4_: /2—|-
6+/x2+9 8 L 2

& 16xP=9(x*+9) < Tx*=38l1

T(x) =0 &

9
<:>x—ﬁ

The only critical number is x = 9/ \/—7_ . To see whether the minimum occurs at this criti-
cal number or at an endpoint of the domain [0, 8], we evaluate T at all three points:

T(0) = 1.5 T<i> =1+ —*éﬁ— ~1.33 T(8) = __\/'673 ~ 142

V7

Since the smallest of these values of 7" occurs when x = 9/ ﬁ , the absolute minimum
value of 7" must occur there. Figure 8 illustrates this calculation by showing the graph
of T.

Thus the man should land the boat at a point 9/\/7 km (=3.4 km) downstream from
his starting point. pass

Wl EXAMPLES Find the area of the largest rectangle that can be inscribed in a semi-
circle of radius r.

SOLUTION 1 Let’s take the semicircle to be the upper half of the circle x* + y* = r* with
center the origin. Then the word inscribed means that the rectangle has two vertices on
the semicircle and two vertices on the x-axis as shown in Figure 9.
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rsin @

\

FIGURE 10

rcos @

Let (x, y) be the vertex that lies in the first quadrant. Then the rectangle has sides of
lengths 2x and y, so its area is

A = 2xy

To eliminate y we use the fact that (x, y) lies on the circle x* + y* = r* and so

y = 4/r? — x2. Thus
A=2xrr—x2

The domain of this function is 0 < x < r. Its derivative is
2% Art— %)

Jrr— x? B Jrr — x2

which is 0 when 2x? = 72, that is, x = r/+/2 (since x = 0). This value of x gives a
maximum value of A since A(0) = 0 and A(r) = 0. Therefore the area of the largest
inscribed rectangle is

A =2 -

7

Al ) ma e
NG 2 2

SOLUTION 2 A simpler solution is possible if we think of using an angle as a variable. Let
0 be the angle shown in Figure 10. Then the area of the rectangle is

A(0) = (2rcos 0)(rsin ) = r*(2sin @ cos 6) = r*sin 26

We know that sin 26 has a maximum value of 1 and it occurs when 20 = /2. So A(6)
has a maximum value of 7* and it occurs when 6 = /4.

Notice that this trigonometric solution doesn’t involve differentiation. In fact, we
didn’t need to use calculus at all. EEE

and

Applications to Business and Economics

In Section 3.8 we introduced the idea of marginal cost. Recall that if C(x), the cost func-
tion, is the cost of producing x units of a certain product, then the marginal cost is the rate
of change of C with respect to x. In other words, the marginal cost function is the deriva-
tive, C'(x), of the cost function.

Now let’s consider marketing. Let p(x) be the price per unit that the company can
charge if it sells x units. Then p is called the demand function (or price function) and we
would expect it to be a decreasing function of x. If x units are sold and the price per unit
is p(x), then the total revenue is

R(x) = xp(x)

and R is called the revenue function. The derivative R’ of the revenue function is called
the marginal revenue function and is the rate of change of revenue with respect to the
number of units sold.

If x units are sold, then the total profit is

P(x) = R(x) — C(x)

and P is called the profit function. The marginal profit function is P’, the derivative of
the profit function. In Exercises 43—48 you are asked to use the marginal cost, revenue,
and profit functions to minimize costs and maximize revenues and profits.
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i4 EXAMPLE6 Maximizing revenue A store has been selling 200 DVD burners a week
at $350 each. A market survey indicates that for each $10 rebate offered to buyers, the
number of units sold will increase by 20 a week. Find the demand function and the rev-
enue function. How large a rebate should the store offer to maximize its revenue?

SOLUTION If x is the number of DVD burners sold per week, then the weekly increase in
sales is x — 200. For each increase of 20 units sold, the price is decreased by $10. So for
each additional unit sold, the decrease in price will be % X 10 and the demand function
is

p(x) =350 — 52(x — 200) = 450 — 5x

The revenue function is

R(x) = xp(x) = 450x — 3x°
Since R'(x) = 450 — x, we see that R'(x) = 0 when x = 450. This value of x gives an
absolute maximum by the First Derivative Test (or simply by observing that the graph of
R is a parabola that opens downward). The corresponding price is

p(450) = 450 — 5(450) = 225

and the rebate is 350 — 225 = 125. Therefore, to maximize revenue, the store should

offer a rebate of $125. i
errcises
1. Consider the following problem: Find two numbers whose sum 4. The sum of two positive numbers is 16. What is the smallest

is 23 and whose product is a maximum.
(a) Make a table of values, like the following one, so that the
sum of the numbers in the first two columns is always 23.

possible value of the sum of their squares?

5. Find the dimensions of a rectangle with perimeter 100 m
whose area is as large as possible.

On the basis of the evidence in your table, estimate the

answer to the problem.

6. Find the dimensions of a rectangle with area 1000 m* whose
perimeter is as small as possible.

First number Second number Product
1 22 22
2 21 42
3 20 60

(b) Use calculus to solve the problem and compare with your
answer to part (a).

2. Find two numbers whose difference is 100 and whose product
is a minimum.

3. Find two positive numbers whose product is 100 and whose
sum is a minimum.

. A model used for the yield Y of an agricultural crop as a func-

tion of the nitrogen level N in the soil (measured in appropriate
units) is
kN
1+ N?

where k is a positive constant. What nitrogen level gives the
best yield?

. The rate (in mg carbon/m?/h) at which photosynthesis takes

place for a species of phytoplankton is modeled by the function

1007

Pzi
IP+1+4

where [ is the light intensity (measured in thousands of foot-
candles). For what light intensity is P a maximum?

@ Graphing calculator or computer with graphing software required

[CAS] Computer algebra system required 1. Homework Hints available in TEC
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9. Consider the following problem: A farmer with 750 ft of

10.

1.

12.

13.

14.

fencing wants to enclose a rectangular area and then divide it

into four pens with fencing parallel to one side of the rect-

angle. What is the largest possible total area of the four pens?

(a) Draw several diagrams illustrating the situation, some
with shallow, wide pens and some with deep, narrow
pens. Find the total areas of these configurations. Does it
appear that there is a maximum area? If so, estimate it.

(b) Draw a diagram illustrating the general situation.
Introduce notation and label the diagram with your
symbols.

(c) Write an expression for the total area.

(d) Use the given information to write an equation that
relates the variables.

(e) Use part (d) to write the total area as a function of one
variable.

(f) Finish solving the problem and compare the answer with
your estimate in part (a).

Consider the following problem: A box with an open top is to
be constructed from a square piece of cardboard, 3 ft wide,
by cutting out a square from each of the four corners and
bending up the sides. Find the largest volume that such a box
can have.

(a) Draw several diagrams to illustrate the situation, some
short boxes with'large bases and some tall boxes with
small bases. Find the volumes of several such boxes.
Does it appear that there is a maximum volume? If so,
estimate it.

(b) Draw a diagram illustrating the general situation.
Introduce notation and label the diagram with your
symbols.

(c) Write an expression for the volume.

(d) Use the given information to write an equation that
relates the variables.

(e) Use part (d) to write the volume as a function of one
variable.

(f) Finish solving the problem and compare the answer with
your estimate in part (a).

If 1200 cm? of material is available to make a box with a
square base and an open top, find the largest possible volume
of the box.

A box with a square base and open top must have a volume
of 32,000 cm?. Find the dimensions of the box that minimize
the amount of material used.

(a) Show that of all the rectangles with a given area, the one
with smallest perimeter is a square.

(b) Show that of all the rectangles with a given perimeter, the
one with greatest area is a square.

A rectangular storage container with an open top is to have a
volume of 10 m?. The length of its base is twice the width.
Material for the base costs $10 per square meter. Material for
the sides costs $6 per square meter. Find the cost of materials
for the cheapest such container.

15

1 16

17

18.

19.

20.

21.

22.

23.

24.

. Find the points on the ellipse 4x> + y? = 4 that are farthest
away from the point (1, 0).

. Find, correct to two decimal places, the coordinates of the
point on the curve y = tan x that is closest to the point (1, 1),

. Find the dimensions of the rectangle of largest area that can
be inscribed in an equilateral triangle of side L if one side of
the rectangle lies on the base of the triangle.

Find the dimensions of the rectangle of largest area that has
its base on the x-axis and its other two vertices above the
x-axis and lying on the parabolay = 8 — x2.

A right circular cylinder is inscribed in a sphere of radius r.
Find the largest possible volume of such a cylinder.

Find the area of the largest rectangle that can be inscribed in
the ellipse x*/a* + y*/b* = 1.

Find the dimensions of the isosceles triangle of largest area
that can be inscribed in a circle of radius r.

A cylindrical can without a top is made to contain V cm? of
liquid. Find the dimensions that will minimize the cost of the
metal to make the can.

A Norman window has the shape of a rectangle surmounted
by a semicircle. (Thus the diameter of the semicircle is equal
to the width of the rectangle. See Exercise 58 on page 24.) If
the perimeter of the window is 30 ft, find the dimensions of
the window so that the greatest possible amount of light is
admitted.

A right circular cylinder is inscribed in a cone with height &
and base radius r. Find the largest possible volume of such a
cylinder.

257 A piece of wire 10 m long is cut into two pieces. One piece

26.

2].

is bent into a square and the other is bent into an equilateral
triangle. How should the wire be cut so that the total area
enclosed is (a) a maximum? (b) A minimum?

A fence 8 ft tall runs parallel to a tall building at a distance of
4 ft from the building. What is the length of the shortest lad-
der that will reach from the ground over the fence to the wall
of the building?

A cone-shaped drinking cup is made from a circular piece
of paper of radius R by cutting out a sector and joining the
edges CA and CB. Find the maximum capacity of such a cup-

A B



29.

30.

3.

32.

33,

g, A cone- shaped paper drinking cup is to be made to hold 27 cm®

of water. Find the height and radius of the cup that will use the
gmallest amount of paper.

A cone with height A is inscribed in a larger cone with

height H so that its vertex is at the center of the base of the

Jarger cone. Show that the inner cone has maximum volume
when h = 3H

The graph shows the fuel consumption c of a car (measured in
gallons per hour) as a function of the speed v of the car. At very
Jlow speeds the engine runs inefficiently, so initially ¢ decreases
as the speed increases. But at high speeds the fuel consumption
increases. You can see that ¢(v) is minimized for this car when

~ 30 mi/h. However, for fuel efficiency, what must be mini-
mized is not the consumption in gallons per hour but rather the
fuel consumption in gallons per mile. Let’s call this consump-
tion G. Using the graph, estimate the speed at which G has its
minimum value.

c

If a resistor of R ohms is connected across a battery of E volts
with internal resistance r ohms, then the power (in watts) in the
external resistor is

E*R

Pe®Re oy

If E and r are fixed but R varies, what is the maximum value of
the power?

For a fish swimming at a speed v relative to the water, the
energy expenditure per unit time is proportional to v>. It is
believed that migrating fish try to minimize the total energy
required to swim a fixed distance. If the fish are swimming
against a current u (1 < v), then the time required to swim a
distance L is L/(v — u) and the total energy E required to
swim the distance is given by

E(v) = av®
—u

where a is the proportionality constant.
(a) Determine the value of » that minimizes E.
(b) Sketch the graph of E.

Note: This result has been verified experimentally; migrating
fish swim against a current at a speed 50% greater than the
Current speed.

In a beehive, each cell is a regular hexagonal prism, open at
one end with a trihedral angle at the other end as in the figure.
Itis believed that bees form their cells in such a way as to

34.

35.

36.

37.

38.

SECTION 4.6 OPTIMIZATION PROBLEMS 307
minimize the surface area for a given volume, thus using the
least amount of wax in cell construction. Examination of these
cells has shown that the measure of the apex angle 0 is amaz-
ingly consistent. Based on the geometry of the cell, it can be
shown that the surface area S is given by

S = 6sh — 35*cot 0 + (352/3/2) csc 0

where s, the length of the sides of the hexagon, and A, the

height, are constants.

(a) Calculate dS/do.

(b) What angle should the bees prefer?

(c) Determine the minimum surface area of the cell (in terms
of s and h).

Note: Actual measurements of the angle 6 in beehives have

been made, and the measures of these angles seldom differ

from the calculated value by more than 2°.

trihedral
angle 6

rear
of cell

front
of cell

A boat leaves a dock at 2:00 pM and travels due south at a
speed of 20 km/h. Another boat has been heading due east at
15 km/h and reaches the same dock at 3:00 M. At what time
were the two boats closest together?

An oil refinery is located on the north bank of a straight river
that is 2 km wide. A pipeline is to be constructed from the
refinery to storage tanks located on the south bank of the

river 6 km east of the refinery. The cost of laying pipe is
$400,000/km over land to a point P on the north bank and
$800,000/km under the river to the tanks. To minimize the cost
of the pipeline, where should P be located?

Suppose the refinery in Exercise 35 is located 1 km north of the
river. Where should P be located?

The illumination of an object by a light source is directly propor-
tional to the strength of the source and inversely proportional
to the square of the distance from the source. If two light
sources, one three times as strong as the other, are placed 10 ft
apart, where should an object be placed on the line between the
sources so as to receive the least illumination?

A woman at a point A on the shore of a circular lake with
radius 2 mi wants to arrive at the point C diametrically
opposite A on the other side of the lake in the shortest possible



308

39.

40.

M.

42.

43.

44.

45,

46.

47.

CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

time (see the figure). She can walk at the rate of 4 mi/h and
row a boat at 2 mi/h. How should she proceed?

Find an equation of the line through the point (3, 5) that cuts
off the least area from the first quadrant.

At which points on the curve y = 1 + 40x> — 3x° does the
tangent line have the largest slope?

What is the shortest possible length of the line segment that is
cut off by the first quadrant and is tangent to the curve y = 3/x
at some point?

What is the smallest possible area of the triangle that is cut off
by the first quadrant and whose hypotenuse is tangent to the
parabola y = 4 — x? at some point?

(a) If C(x) is the cost of producing x units of a commodity,
then the average cost per unit is ¢(x) = C(x)/x. Show that
if the average cost is a minimum, then the marginal cost
equals the average cost.

(b) If C(x) = 16,000 + 200x + 4x*?, in dollars, find (i) the
cost, average cost, and marginal cost at a production level
of 1000 units; (ii) the production level that will minimize
the average cost; and (iii) the minimum average cost.

(a) Show that if the profit P(x) is a maximum, then the
marginal revenue equals the marginal cost.

(b) If C(x) = 16,000 + 500x — 1.6x* + 0.004x° is the cost
function and p(x) = 1700 — 7x is the demand function,
find the production level that will maximize profit.

A baseball team plays in a stadium that holds 55,000 spectators.
With ticket prices at $10, the average attendance had been
27,000. When ticket prices were lowered to $8, the average
attendance rose to 33,000.

(a) Find the demand function, assuming that it is linear.

(b) How should ticket prices be set to maximize revenue?

During the summer months Terry makes and sells necklaces on

the beach. Last summer he sold the necklaces for $10 each and

his sales averaged 20 per day. When he increased the price by

$1, he found that the average decreased by two sales per day.

(a) Find the demand function, assuming that it is linear.

(b) If the material for each necklace costs Terry $6, what
should the selling price be to maximize his profit?

A manufacturer has been selling 1000 television sets a week at

$450 each. A market survey indicates that for each $10 rebate

offered to the buyer, the number of sets sold will increase by

100 per week.

(a) Find the demand function.

(b) How large a rebate should the company offer the buyer in
order to maximize its revenue?

48.

49.

(c) If its weekly cost function is C(x) = 68,000 + 150x, how
should the manufacturer set the size of the rebate in order
to maximize its profit?

The manager of a 100-unit apartment complex knows from
experience that all units will be occupied if the rent is $800
per month. A market survey suggests that, on average, one
additional unit will remain vacant for each $10 increase in rent,
What rent should the manager charge to maximize revenue?

Let a and b be positive numbers. Find the length of the shortest
line segment that is cut off by the first quadrant and passes
through the point (a, b).

. The frame for a kite is to be made from six pieces of wood.

The four exterior pieces have been cut with the lengths
indicated in the figure. To maximize the area of the kite, how
long should the diagonal pieces be?

. Let v; be the velocity of light in air and v, the velocity of light

in water. According to Fermat’s Principle, a ray of light will
travel from a point A in the air to a point B in the water by a
path ACB that minimizes the time taken. Show that

sin 01 U1

sin 6, 23

where 0, (the angle of incidence) and 6, (the angle of refrac-
tion) are as shown. This equation is known as Snell’s Law.

A
0,

. Two vertical poles PQ and ST are secured by a rope PRS

going from the top of the first pole to a point R on the ground
between the poles and then to the top of the second pole as in
the figure. Show that the shortest length of such a rope occurs
when 0; = 0,.
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53. The upper right-hand corner of a piece of paper, 12 in. by 8 in.,

54.

55.

57,

as in the figure, is folded over to the bottom edge. How would
you fold it so as to minimize the length of the fold? In other
words, how would you choose x to minimize y?

A steel pipe is being carried down a hallway 9 ft wide. At the
end of the hail there is a right-angled turn into a narrower hall-
way 6 ft wide. What is the length of the longest pipe that can
be carried horizontally around the corner?

f— O\ —>|

<—9—-—-———>

Find the maximum area of a rectangle that can be circum-
scribed about a given rectangle with length L and width W.
[Hint: Express the area as a function of an angle 6.]

. A rain gutter is to be constructed from a metal sheet of width

30 cm by bending up one-third of the sheet on each side
through an angle 6. How should 6 be chosen so that the gutter
will carry the maximum amount of water?

N A

|<— 10 cm —«— 10 cm —<— 10 cm —

Where should the point P be chosen on the line segment AB so
as to maximize the angle 6?

B 9

I
|

A 5
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58. A painting in an art gallery has height 4 and is hung so that its

59.

60.

lower edge is a distance d above the eye of an observer (as in
the figure). How far from the wall should the observer stand to
get the best view? (In other words, where should the observer
stand so as to maximize the angle 6 subtended at his eye by the
painting?)

Ornithologists have determined that some species of birds tend
to avoid flights over large bodies of water during daylight
hours. It is believed that more energy is required to fly over
water than over land because air generally rises over land and
falls over water during the day. A bird with these tendencies is
released from an island that is 5 km from the nearest point B
on a straight shoreline, flies to a point C on the shoreline, and
then flies along the shoreline to its nesting area D. Assume that
the bird instinctively chooses a path that will minimize its
energy expenditure. Points B and D are 13 km apart.

(a) In general, if it takes 1.4 times as much energy to fly over
water as it does over land, to what point C should the bird
fly in order to minimize the total energy expended in
returning to its nesting area?

(b) Let W and L denote the energy (in joules) per kilometer
flown over water and land, respectively. What would a large
value of the ratio W/L mean in terms of the bird’s flight?
‘What would a small value mean? Determine the ratio W/L
corresponding to the minimum expenditure of energy.

(c) What should the value of W/L be in order for the bird to fly
directly to its nesting area D? What should the value of W/L
be for the bird to fly to B and then along the shore to D?

(d) If the ornithologists observe that birds of a certain species
reach the shore at a point 4 km from B, how many times
more energy does it take a bird to fly over water than over
land?

The blood vascular system consists of blood vessels (arteries,
arterioles, capillaries, and veins) that convey blood from

the heart to the organs and back to the heart. This system
should work so as to minimize the energy expended by the
heart in pumping the blood. In particular, this energy is reduced
when the resistance of the blood is lowered. One of Poiseuille’s
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Laws gives the resistance R of the blood as

R=cC%
4

where L is the length of the blood vessel, r is the radius, and C
is a positive constant determined by the viscosity of the blood.
(Poiseuille established this law experimentally, but it also fol-
lows from Equation 6.7.2.) The figure shows a main blood ves-
sel with radius r; branching at an angle 6 into a smaller vessel
with radius r,.

vascular
branching

(a) Use Poiseuille’s Law to show that the total resistance of the
blood along the path ABC is

R = C<a &3 b4cot0 i bcs400>
r r;

where a and b are the distances shown in the figure.
(b) Prove that this resistance is minimized when

4

cos 0 =—3

r

(c) Find the optimal branching angle (correct to the nearest
degree) when the radius of the smaller blood vessel is two-
thirds the radius of the larger vessel.

1<

61. The speeds of sound ¢; in an upper layer and ¢, in a lower layey
of rock and the thickness & of the upper layer can be deter-
mined by seismic exploration if the speed of sound in the lower
layer is greater than the speed in the upper layer. A dynamite
charge is detonated at a point P and the transmitted signals are
recorded at a point Q, which is a distance D from P. The first
signal to arrive at Q travels along the surface and takes 7' sec-
onds. The next signal travels from P to a point R, from R to §
in the lower layer, and then to Q, taking 7> seconds. The third
signal is reflected off the lower layer at the midpoint O of RS
and takes 75 seconds to reach Q.

(a) Express T, T, and T3 in terms of D, h, ¢y, ¢2, and 0.

(b) Show that T is a minimum when sin 0 = ¢/c,.

(¢c) Suppose that D = 1 km, T} = 0.26 s, T, = 0.32 s, and
T5 = 0.34 s. Find ¢y, ¢z, and h.

Pl D 10

Speed of sound = ¢,

Note: Geophysicists use this technique when studying the
structure of the earth’s crust, whether searching for oil or
examining fault lines.

62. Two light sources of identical strength are placed 10 m apart.

An object is to be placed at a point P on a line € parallel to the
line joining the light sources and at a distance d meters from it
(see the figure). We want to locate P on € so that the intensity
of illumination is minimized. We need to use the fact that the
intensity of illumination for a single source is directly propor-
tional to the strength of the source and inversely proportional to
the square of the distance from the source.

(a) Find an expression for the intensity /(x) at the point P.

(b) If d = 5 m, use graphs of /(x) and I'(x) to show that the
intensity is minimized when x = 5 m, that is, when P is at
the midpoint of €.

(c) If d = 10 m, show that the intensity (perhaps surprisingly)
is not minimized at the midpoint.

(d) Somewhere between d = 5 m and d = 10 m there is a tran-
sitional value of d at which the point of minimal illumina-
tion abruptly changes. Estimate this value of d by graphical
methods. Then find the exact value of d.
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