Section 5.7 Normal Approximation to the Binomial Distribution Math 141

Main ideas

We can approximate the binomial distribution with the normal approximation. The larger n is, the better the approximation.

Recall for the binomial distribution that $\mu=np$ and $\sigma=\sqrt{np(1-p)}$. Also recall the notation that $\binom{n}{k}=C(n,k)$.

Problems

First, recall Problems 3 and 4 from the previous handout. Notice how as n is larger, the distribution looks more and more like a normal distribution. Also see Figures 5.7.1 –4. Finally, recall that when we have normal distribution we need the mean and standard deviation. This is one reason we were interested in μ and σ for binomial distribution problems (like shooting free throws).

2. The incidence rate of color blindness among men in a certain country is 20%. A sample of 70 men is taken. What is the probability that 14 or more of the men are color blind? Find this value exactly.

$$P_{r}(X = 14) + \cdots + P_{r}(X = 70)$$

$$= C(70,14)(.20)^{14}(.80)^{50} + \cdots + C(70,70)(.20)^{70}(.80)^{0}$$

$$= .5476 \text{ using Excel}$$

3. Use the normal curve to approximate the probability of the Problem 2.

$$M = 70(.20) = 14 \qquad J = \sqrt{70(.20)(.80)} \approx 3.35$$

$$Pr\left(\frac{13.5 - 14}{3.35} \le z \le \frac{70.5 - 14}{3.35}\right) \approx Pr\left(-.15 \le z \le \frac{10.88}{3.35}\right)$$

$$\approx Pr\left(-.15 \le z\right) = 1 - Pr\left(z \le -.15\right) = 1 - .4404$$

$$= .5596$$

4. For Problem 2, find the probability that exactly 14 of the 70 men are color blind. Find this value exactly.

$$C(70, 14)(.20)^{14}(.80)^{56} = .1185$$

5. Use the normal curve to approximate the probability of Problem 4.

$$Pr\left(\frac{13.5 - 14}{3.35} \le Z \le \frac{14.5 - 14}{3.35}\right) = Pr\left(-.15 \le Z \le .15\right)$$

$$= .5596 - .4404 = .1192$$

6. An airline accepts 150 reservations for a flight on an airplane that holds 140 passengers. If the probability of a passenger for this flight cancelling is .14, estimate the probability that one or more passengers will be bumped. Let *X* be the number who do not show up for the flight.

			, that one or more p	•	oe	1	9	
bumped. Let X be the number who do <u>not</u> show up for the flight.						:	:	
Pr(X	< 10)	= Pr(z	$\leq 9.5 - (150)$	$\frac{(.14)}{(.86)}$ 9.5		9 10	0	

$$\approx Pr(z \leq -2.70) = ,0035$$

X

0

bumped

10