Section 5.4 The Mean

Math 141

Main ideas

Sample mean $\bar{x} = x_1 \left(\frac{f_1}{n} \right) + x_2 \left(\frac{f_2}{n} \right) + \dots + x_r \left(\frac{f_r}{n} \right)$ where $\frac{f_i}{n}$ is the fraction of the time each outcome x_i did occur.

Population mean $\mu = x_1 \left(\frac{f_1}{N} \right) + x_2 \left(\frac{f_2}{N} \right) + \dots + x_r \left(\frac{f_r}{N} \right)$ where $\frac{f_i}{N}$ is the fraction of the time each outcome x_i did occur.

Expected value is $E(X) = x_1p_1 + x_2p_2 + \cdots + x_Np_N$ where p_i is the fraction of the time each outcome x_i should occur, and:

- Is the average outcome that will occur if the experiment is repeated multiple times and what happens follows what should happen, i.e. it matches the probability distribution.
- Is generally not actually one of the possible values that could occur.
- Is always between the minimum and maximum possible values that could occur.

Given n binomial trials with probability of success p, where X is the number of successes, then the expected value of X is E(X) = np.

Problems

1. Suppose I am interested in the number of years each student in class has been at Pepperdine, and I get the following results:

Sample mean. The average number of years each student in our class has been at

Pepperdine is:
$$\bar{x} = \frac{1.6 + 2.7 + 3.2 + 4.0}{15} = 1\left(\frac{6}{15}\right) + 2\left(\frac{7}{15}\right) + 3\left(\frac{2}{15}\right) + 4\left(\frac{9}{15}\right)$$

2. Suppose you flip four coins /// times:

What should have happened:

Number of heads	Number of	Fraction of time
	times outcome	outcome
	occurred	did occur
0	9	9/111
1	23	23/111
2	37	37/111
3	32	32/111
4	10	10 /111

Number		Fraction of time	
	of heads	outcome	
or neads	oi fieaus	should occur	
	0	1/16	
	1	4/16	
	2	C(4,2)/16 = 6/16	
	3	4/16	
	4	1/16	

Sample mean: the average number of heads that actually occured was:

$$\bar{x} = O\left(\frac{9}{iii}\right) + I\left(\frac{23}{iii}\right) + \cdots + 4\left(\frac{10}{iii}\right)$$

$$= 2 \cdot 10$$

Expected value: The average number of heads that should have occured is:

$$E(X) = O\left(\frac{1}{16}\right) + I\left(\frac{4}{16}\right) + 2\left(\frac{6}{16}\right) + 3\left(\frac{4}{16}\right) + 4\left(\frac{1}{16}\right) = 2$$

3. Pay \$1 to play a game: flip a coin until you get heads or until you flip the coin four times. You win \$.50 for each flip (you are guaranteed at least one flip: the first flip).

Suppose the following did occur:

Outcome	Winnings x_i	Occurrences f_i
Н	50	7
TH	0	6
TTH	.50	5
TTTH	1.00	1
TTTT	1.00	3

Sample mean: the average winnings was

$$\bar{x} = (-.50)(\frac{7}{22}) + \cdots + (1.00)(\frac{3}{22})$$
= .1364

4. Expected return on investments.

Let X_A = return for investment A

k	$Pr(X_A = k)$
\$ 1000	.20
\$ 2000	.50
\$ 3000	.30

What should occur, on average:

Outcome	Winnings x_i	Probability p_i
Н	50	1/2
TH	0	1/4
TTH	.50	1/8
TTTH	1.00	1/16
TTTT	1.00	1/16

Expected value: the expected average winnings

$$E(X) = (-.50)(\frac{1}{2}) + \cdots + (1.00)(\frac{1}{16})$$

$$= -.0625$$

Let X_B = return for investment B

k		$Pr(X_B = k)$
-\$ 1000		.30
\$	0	.10
\$ 4000		.60

Woman

Live

Not

Live

Not

Payout

Probability

(.90×,95)=.85

10 000 (90)(.05)= .045

10000 (10V,95)= .09:

15000 (101.05)=

$$E(X_A) = 1000(.20) + 2000(.50) + 3000(.30) = 2100$$

 $E(X_B) = -1000(.30) + 0(.10) + 4000(.60) = 2100$

Man

Live

Live

Not

Not

5. Life insurance for couple. Policy is for 5 years. Payout: \$ 0 if both are still alive.

\$ 10,000 if one dies, the other lives.

\$ 15,000 if both die.

 $Pr(Man lives \ge 5 years) = .90.$

 $Pr(Woman lives \ge 5 years) = .95.$

Let *X* be payout to couple.

$$E(X) = O(.855) + \cdots + 15000(.005)$$
= 1475

6. If you are a 70% free throw shooter (p=.70) free throw shooter and you shoot 10 shots (n=10), and where X is the number of shots made, then (using our work from Class Handout 5.3) we have

$$E(X) = O(.00006) + 1(.0001) + ...e + 10(.0282) = 7$$

Or (much more simply) $E(X) = 10(.70) = 7$.