Section 5.2 Frequency and Probability Distributions Math 141

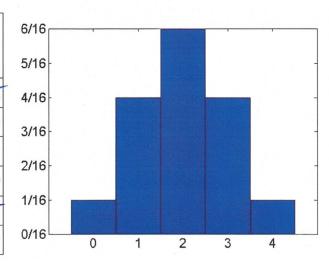
Main ideas

Distribution: possible outcomes.

Frequency distribution: how many times each outcome did occur.

Relative frequency distribution: what fraction of the time each outcome did occur.

Probability distribution ("expected relative frequency distribution"): what *fraction* of the time each outcome **should** occur.


In histograms, area = probability.

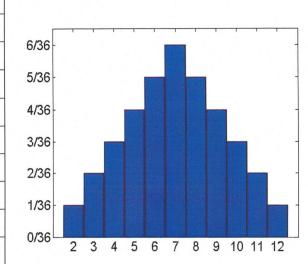
Random variables.

Problems

Probability distribution.
 Flip 4 coins. Total number of possible outcomes =

Outcome (number of heads)	Number of ways it can occur	Probability
of ficaus/	carr occur	
0	C(4,0)=1	1/16 = .0625
1	C(4,1) = 4	4/16 = .2500
2	C(4,2)=6	6/16 = .3750
3	C(4,3) = 4	4/16 = 2500
4	C(4, 4) = 1	1/14 = .0625
Total	16	16/16 = 1.0000

2. Frequency distribution, relative frequency distribution, probability distribution. Flip 4 coins. Record the number of heads for each flip.


Outcome (number of heads)	Frequency	Relative frequency	Expected relative frequency (probability)
0	9	9/111 = ,0811	.0625
1	23	23/111 = .2072	.2500
2	37	37/111 = .3333	.3750
3	32	32/111 = .2883	.2500
4	10	10/111 = .0901	.0625
Total	111	111/111 = 1.0000	1.0000

3. Frequency distribution, relatively frequency distribution, probability distribution.

Roll two dice. Record the sum of each roll.

From a previous semester of this class.

Sum	# of outcomes	Fraction of all outcomes	Expected fraction
2	15	15/926 = .0162	1 /36 = .0278
3	73	73/926 = .0788	2 /36 = .0556
4	69	69/926 = .0745	3 /36 = .0833
5	94	94/926 = .1015	4/36 = .1111
6	130	130/926 = .1404	5/36 = .1389
7	150	150/926 = .1620	6/36 = .1667
8	125	125/926 = .1350	5/36 = .1389
9	110	110/926 = .1188	4/36 = .1111
10	80	80/926 = .0864	3/36 = .0833
11	55	55/926 = .0594	2/36 = .0556
12	25	25/926 = .0270	1/36 = .0278
Total	926	1.0000	1.0000

4. Random variable X is the thing we are interested in for an experiment.

Experiment: flip four coins. Let X = the number of heads.

k	Pr(X = k)
0	1/16
1	4/16
2	6/16
3	4/16
4	1/16

Experiment: roll two dice. Let X = the sum of dice.

k	Pr(X = k)	
2	1/36	
3	2/36	
4	3/36	
:	:	
12	1/36	

5. Suppose there is some experiment with the following outcomes of -1, 0, 1 or 2.

k	Pr(X = k)
-1	.2
0	.3
1	.4
2	.1

k	$Pr(X^2 = k)$
0	,3
1	.6
4	0

k	$Pr(X^2 + 2 = k)$
2	. 3
3	. 6
6	01