Section 4.6 Bayes' Theorem

Math 141

Main ideas

Bayes' Theorem: if the sample space $S = E \cup E'$ (everything is either in E or not), then

$$\Pr(E|F) = \frac{Pr(E \cap F)}{\Pr(F)} = \frac{Pr(E \cap F)}{Pr(E \cap F) + Pr(E' \cap F)} = \frac{Pr(E) \cdot \Pr(F|E)}{Pr(E) \cdot \Pr(F|E) + Pr(E') \cdot \Pr(F|E')}$$

So in order to find Pr(E|F) we use Pr(F|E), plus some other values.

Where the entire sample space can be divided into mutually exclusive (non-overlapping) categories

$$S = E_1 \cup E_2 \cup \cdots \cup E_n$$

then

$$Pr(F) = Pr(F \cap E_1) + Pr(F \cap E_2) + \dots + Pr(F \cap E_n)$$

and

$$\Pr(E_i|F) = \frac{Pr(E_i \cap F)}{\Pr(F)} = \frac{Pr(E_i) \cdot \Pr(F|E_i)}{Pr(E_1) \cdot \Pr(F|E_1) + \dots + \Pr(E_i) \cdot \Pr(F|E_i) + \dots + \Pr(E_n) \cdot \Pr(F|E_n)}$$

Problems

1. Classes and grades.

Classes and grades		
Class	Fraction of all students	Fraction of group with an A
C1 (freshman)	.10	.80
C2 (sophomore)	. 20	.90
C3 (junior)	.30	. 60
C4 (senior)	. 40	.70
Pr(A) = (0.10), 8 $Pr(A') = (0.10), 8$		
Notice that .60 <	Pr(A) < .90	and $.10 < Pr(A)$
$Pr(C2 \mid A) = $	Pr(C2 an	

Why does it makes sense that Pr(C2|A) > Pr(C2)?

$$Pr(C3|A') = \frac{Pr(C3 \text{ ml } A')}{Pr(A')} = \frac{(.30)(.40)}{.28} = .43$$

Pr(A) .72

Why does it make sense that Pr(C3|A') > Pr

2. Age and gender.

Group	Fraction of population	Fraction of this group that is male
G1 (0 – 5)	.07	.51
G2 (5 – 19)	. 25	.51
G3 (20 – 44)	.37	. 49
G4 (45 – 64)	.20	.41
G5 (65 –)	.11	. 40

Prediction: .40 < Pr(M) < .51.

$$Pr(M) = (.07)(.51) + ... + (.11)(.40) = .4705$$

$$Pr(G1|M) = \frac{(.07)(.57)}{4705} = .076$$

$$Pr(G2|M) = (.25)(.51) = .271$$

$$Pr(G3|M) = (37)(49) = 385$$

$$Pr(G4|M) = \frac{(.20)(.41)}{4705} = .174$$

$$Pr(G1|M) = \frac{(.07)(.57)}{.4705} = .076$$

$$Pr(G2|M) = \frac{(.25)(.57)}{.4705} = .271$$

$$Pr(G3|M) = \frac{(.37)(.49)}{.4705} = .385$$

$$Pr(G4|M) = \frac{(.20)(.41)}{.4705} = .174$$

$$Pr(G5|M) = \frac{(.11)(.40)}{.4705} = .094$$

Probability of being in group

7					
Group	If no info	If person			
Стоир	on gender	is male			
G1 (0 – 5)	.07	7.076			
G2 (5 – 19)	. 25	7 .271			
G3 (20 – 44)	. 37	7 .385			
G4 (45 – 64)	. 20	¥ .174			
G5 (65 –)	. 11	¥ .094			

3. Approximately 10% of the population is left-handed. A person is on trial for a particular crime. The prosecution has proven with approximately 80% certainty that the defendant committed the crime (without using information about whether the defendant is left- or right-handed). In addition, the prosecution has proven that the person who did commit the crime is left-handed. The defendant is left-handed. With the additional information that crime was committed by a left-handed person and that the defendant is left-handed, how likely is it he actually committed the crime?

$$Pr(C|L) = Pr(C \text{ and } L)$$

$$= \frac{(.80)(1)}{(.80)(1) + (.20)(.10)}$$

4. According to a NY Times article, about 2% of women aged 40 to 49 years old develop breast cancer during that decade of her life. But the mammogram used for women in that age group has a high rate of false positives and false negatives. The false positive rate is .30 and the false negative rate is .25. If a woman in her 40s has a positive mammogram test result, what is the probability that she actually has breast cancer? (More on medical testing next class.)

9756

$$Pr(c|+) = Pr(c \text{ and } +)$$

$$= \frac{(.02)(.75)}{(.02)(.75) + (.98)(.30)}$$

5. 10% percent of the pens made by Apex are defective. Only 5% made by its competitor, B-ink, are defective. Since Apex pens are cheaper than B-ink pens, an office orders 70% of its stock from Apex and 30% from B-ink. A pen is chosen at random and found to be defective. What is the probability that it was produced by Apex?

$$Pr(A|D) = \frac{Pr(A \text{ and } D)}{Pr(D)}$$

$$= \frac{(.70)(.10)}{(.70)(.10)} \approx .82$$