Section 3.5/3.6 Permutations and Combinations/Further Counting Problems Math 141

Main ideas

Permutation: order matters $P(n,r) = \frac{n!}{(n-r)!} = n \cdot (n-1) \cdot \cdots \cdot (n-r+1)$.

Example: $P(10,4) = \frac{10!}{(10-4)!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6!} = 10 \cdot 9 \cdot 8 \cdot 7$.

To permute means to order (put in a certain order).

Combination: order does not matter $C(n,r) = \frac{n!}{r! (n-r)!}$.

Example: $(10,4) = \frac{10!}{(10-4)! \ 4!} = \frac{10!}{6! \ 4!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6! \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1}$.

Two other common notations for C(n,r) are $\binom{n}{r}$ and C_r^n .

Note that $P(n,r) = C(n,r) \cdot r!$ This means:

The number of ways to choose and order r items from n total = The number of ways to choose r items from n · The number of ways to order the r items.

For both permutations and combinations, we say "n choose r." For example, "10 choose 4."

There are $r! = r \cdot (r-1) \cdot (r-2) \cdot \cdots \cdot 2 \cdot 1$ ways to order (put in a particular order) r items. Examples: $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$, 1! = 1 and 0! = 1.

For computations you can use various technology, e.g. Excel, calculators or Google.

Problems

1. Factorials:

$$5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \qquad \frac{9!}{7!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = \frac{9 \cdot 8 \cdot 7!}{7!} = 9 \cdot 8 \qquad C(9,2) = \frac{9!}{2! \ 7!} = \frac{9 \cdot 8 \cdot 7!}{2 \cdot 1 \cdot 7!} = \frac{9 \cdot 8}{2 \cdot 1}$$

2. Combinations:

$$C(5,2) = \frac{5!}{2! \, 3!} = \frac{5 \cdot 4}{2 \cdot 1}$$

$$C(5,3) = \frac{5!}{3! \, 2!} \text{ (which } = C(5,2))$$

$$C(5,0) = \frac{5!}{0! \, 5!} = 1$$

$$C(5,1) = \frac{5!}{1! \, 4!} = 5$$

$$C(n,0) = \frac{n!}{0! \, n!} = 1$$

$$C(n,1) = \frac{n!}{1! \, (n-1)!} = n$$

$$C(5,5) = \frac{5!}{0! \, 5!} = 1$$

$$C(5,4) = \frac{5!}{4! \, 4!} = 5$$

$$0! \, 5! \qquad \qquad 0! \,$$

$$C(n,n) = \frac{n!}{n! \ 0!} = 1$$
 $C(n,n-1) = \frac{n!}{(n-1)! \ 1!} = n$

3. Three problems:
$$P(20,3) = \frac{20!}{(20-3)!} = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{17!} = 20 \cdot 19 \cdot 18$$
Number of ways to choose 3 persons from 20 if order matters: $D(20.2)$

Number of ways to choose 3 persons from 20 if order matters:
$$P(20, 3)$$

Number of ways to award gold, silver & bronze medals if 20 athletes compete:

4. Three other problems:
$$C(20,3) = \frac{20!}{3! \cdot 17!} = \frac{20 \cdot 19 \cdot 18 \cdot 17!}{3 \cdot 2 \cdot 1 \cdot 17!} = \frac{20 \cdot 19 \cdot 18}{3 \cdot 2 \cdot 1}$$
Number of ways to choose 3 persons from 20 if order does not matter: $C(20, 3)$

Number of ways to choose 3 persons from 20 if order does not matter:
$$C(20, 3)$$

Number of ways to award three medals (all gold) if 20 athletes compete: (20, 3)

6. Number of ways to choose the starting 5 players from a 13-person basketball team:
$$C(13, 5) = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}$$

We can choose anyone we want:
$$C(10,3) \cdot 3! = P(10,3) = 10 \cdot 9 \cdot 8$$

James must be president:
$$1 \cdot 9 \cdot 8 = P(9, 2) = C(9, 2) \cdot 2!$$

We can choose anyone we want:
$$C(10, 3)$$

James must be one of the committee members:
$$1 \cdot (9, 2)$$

$$C(15,0) + C(15,1) + \cdots + C(15,15)$$
oR: 2

10. Number of ways five Italian books and four novels be placed on a bookshelf if

The books can be placed in any order:
$$91$$

11. Of a family of 4, number of different combinations could come to dinner of

Size 0: C(4,0) = 1

Size 1: (4, 1) = 4

Size 2: C(4, 2) = 6

Size 3: C(4, 3) = 4

Size 4: C(4,0) = 1

Notice: $2^4 = 1 + 4 + 6 + 4 + 1$

12. From 4 sets total, number of subsets of size

0 of 4:

1 of 4: 4

2 of 4:

3 of 4: 4

4 of 4:

Notice: Same as in 11.

D

X

X

X

X

X

X

X

X

X

12

13

14

15

16

As seen in problems 11 and 12, in general: $C(n,0) + C(n,1) + \cdots + C(n,n) = 2^n$.

13. Suppose that 7 of 100 CDS are jazz. Number of ways to select 5 of the 100 in which

0 of the 5 is jazz: $C(7,0) \cdot C(93,5) = 51,971,283$

1 of the 5 is jazz: $C(7,1) \cdot C(93,4) = 20,438,145$

2 of the 5 are jazz: $C(7, 2) \cdot C(93, 3) = 2,725,086$

3 of the 5 are jazz: $C(7,3) \cdot C(93,2) = 149,730$

4 of the 5 are jazz: $(7, 4) \cdot (93, 1) = 3,255$

All of the 5 are jazz: $C(75) \cdot C(93,0) = 21$

Any number can be jazz or not: (100, 5) = 75,287,520

	For tv	NO SCC	op cas	e, with	flavors	A,B,C,[D,E:
14. An ice cream shop offers 5 flavors. Number of		AA	BA	CA	DA	EA	
different cups of ice cream are possible of		AB	BB	СВ	DB	EB	
1 scoop: 5		AC	BC	CC	DC	EC	
		AD	BD	CD	DD	ED	
2 scoops: (Why isn't it simply $5 \cdot 5$?)		AE	BE	CE	DE	EE	
	(5,2) =	5.4	t T			
3 scoops: $5 + ((5,2)-2) + (($; 3)						
	ð						

15. Number of ways to choose 3 of 10 different toppings to put on

3 scoops of vanilla: C(10, 3)

1 scoop of chocolate, 1 of vanilla, 1 of strawberry: $C(10,3) \cdot 3$. or $10.9 \cdot 8$. P(10,3)

16. A restaurant offers its customers a choice of 3 side dishes with each meal. The side dishes can be chosen from a list of fifteen possibilities with duplications allowed. For instance, a customer can order two sides of mashed potatoes and one side of string beans. Show that there are 680 possible options for the three side dishes.

An idea that comes up in Problem 17 below:

at
$$P(n,r) = C(n,r) \cdot r$$

The number of ways to choose and order r items from n total $=$

The number of ways to choose r items from n. The number of ways to order the r items.

so
$$C(n,r) = P(n,r)$$

The number of ways to choose r items from n =

The number of ways to choose and order r items from n total / The number of ways to order the r items.

17. There are 2 senators from each of the 50 states. Number of ways to select a

The 5 could come from any state: $C(100,5) = \frac{100.99.98.97.96}{5.4.3.2.1}$ committee of 5 members if

The 5 must come from 5 different states:

$$\frac{100.98.96.94.92}{51} \text{ on } C(50,5) \cdot 2^{5} = 50.49.48.47.46 \cdot 2^{5}$$