Name:
Solutions

Problem	$1 / 2 / 3$	$4 / 5$	$6 / 7$	8	9	Total
Possible	27	19	26	12	16	100
Received						

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3×5 card (both sides) of handwritten notes and a calculator.

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.
hamm... and yet another day has passed and I did not use Algebra once...very interesting.

4 points 1. In New York City people often take the subway or they take a taxi (taxis and subways are in competition with each other). Let $f\left(p_{1}, p_{2}\right)$ be the number of people who take the subway, where p_{1} is the price of a subway ride and p_{2} is the price of a taxi ride. What would be the sign of each of the following? (Just circle one for each derivative.)

$$
\begin{array}{ll}
\frac{\partial f}{\partial p_{1}} \text { would be: } \quad>0 & =0 \\
\frac{\partial f}{\partial p_{2}} \text { would be: } \quad<0 & A s p_{1}, f, d \\
>0 & <0
\end{array} A_{s} p_{2}, f \$
$$

14 points 2. For $f(x, y)=e^{y / x^{2}}$, find the following derivatives: $f=e^{y x^{-2}}$
$13 \quad \frac{\partial f}{\partial x}=e^{y x^{-2}} \cdot y \cdot(-2) x^{-3}$
$/ 3 \quad \frac{\partial f}{\partial y}=e^{y x^{-2}} \cdot x^{-2}$
$14 \quad \frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(e^{y x^{-2}} \cdot x^{-2}\right)=e^{y x^{-2}} \cdot x^{-2} \cdot x^{-2}$
$\begin{aligned} 14 \quad \frac{\partial^{2} f}{\partial x \partial y}= & \frac{\partial}{\partial x}\left(e^{y x^{-2}} \cdot x^{-2}\right)= \\ & =e^{y x^{-2}} \cdot y\left(-2 ; x^{-3} \cdot x^{-2}\right. \\ & +e^{y x^{-2}} \cdot(-2) x^{-3}\end{aligned}$
9 points
3. Consider the production function $f(x, y)=10 x^{1 / 2} y^{1 / 2}$ where x is units of labor and y is units of capital.
13 Find and interpret $f(25,49)=10 \sqrt{25} \sqrt{49}=350$
Production with 25 units labor, 49 units capital.
14 Find and interpret $\frac{\partial f}{\partial x}(25,49) . \frac{\partial f}{\partial x}=10\left(\frac{1}{2}\right) x^{-1 / 2} y^{1 / 2}=\frac{5 \sqrt{y}}{\sqrt{x}}$ $\frac{\partial f}{\partial x}(25,49)=\underbrace{\frac{5 \sqrt{49}}{\sqrt{25}}}=7$. If $\times \neq 1, f \neq 7$.
$/ 2$ Find the marginal productivity of labor at $(x, y)=(25,49)$.

9 points 4. Suppose for $f(x, y)$ that: $f(1,2)=20, \frac{\partial f}{\partial x}(1,2)=10$, and $\frac{\partial f}{\partial y}(1,2)=5$.
Using this info, estimate each of the following:
$1 + 3 \longdiv { 1 4 \quad f (4 , 2) \approx 2 0 + 3 \cdot 1 0 } = 5 0$
$2+214 f(1,4) \approx 20+2.5=30$
$/ 1 \quad f(\mathbf{4}, \mathbf{4}) \approx 20+3 \cdot 10+2 \cdot 5=60$

10 points 5. Consider the following data which lists the per capita spending on health care in the United States from 2020 to 2023.

Years t after 2020	Spending S
0	$\$ 7760$
1	$\$ 8010$
2	$\$ 8230$
3	$\$ 8600$

The line that best fits these data is

$$
S=275 t+7750,
$$

where t is the number of years after 2020 .
/2 What does the value 275 represent? (Don't just say slope-explain what it tells us.) If $t \notin 1$, then $S \& 275$. That is spending increases by $\$ 275 /$ year.
$/ 4$ Based on these data (i.e. this line), what do you estimate the per capita spending will be in the year 2030 (10 years after 2020)?

$$
S=275(10)+7750=\$ 10,500 .
$$

/4 Based on these data, by approximately what year do you expect per capita spending to reach $\$ 15,000$?

$$
\begin{aligned}
& 15000=275 t+7750 \\
& \Rightarrow t=\frac{15000-7750}{275} \approx 26.36,
\end{aligned}
$$

So year $2020+26.36$, i.e. about

$$
\frac{1}{3} \text { though year } 2046
$$

13 points
6. Suppose we are trying to enclose a rectangular garden, where the lower wall is made of stone and costs $\$ 90$ per foot, and the upper and two side walls are made of wood at $\$ 30$ per foot. So the cost of the four walls would be

$$
90 x+30 x+30 y+30 y=120 x+60 y=1200
$$

Find the values of x and y which $1201200-120 x-60 y$
 given the constraint that we have $\$ 1200$ to spend on the wall. Use the Lagrange Multiplier Method.

$$
\begin{aligned}
& F=x y+\lambda(1200-120 x-60 y) \\
&=x y+1200 \lambda-120 \lambda x-60 \lambda y \\
& \frac{\partial F}{\partial x}\left.=y-120 \lambda=0 \Rightarrow \lambda=\frac{y}{120}\right] \frac{y}{120}=\frac{x}{60} \\
& \frac{\partial F}{\partial y}=x-60 \lambda\left.=0 \Rightarrow \lambda=\frac{x}{60}\right) \Rightarrow y=2 x \\
& \text { In constraint: } 120 x+60(2 x)=1200 \\
& \Rightarrow x=5 \\
& y=10
\end{aligned}
$$

Extra credit: by approximately how much would the area increase if we could spend $\$ 1$ more on building the wall? Use λ to answer this question.

$$
\lambda=\frac{10}{120}\left(=\frac{5}{60}\right)=\frac{1}{12} .
$$

13 points 7. Same information as in the previous problem, but now we want to find the values of x and y which minimize cost with the constraint that the area be $400 \mathrm{ft}^{2}$. Use any Calculus-based method you like -you do not necessarily have to use the Lagrange Multiplier Method (of course you can), but you do need to use Calculus (derivatives) in solving this.

$$
\begin{aligned}
F & =120 x+60 y+\lambda(400-x y) \\
& =120 x+60 y+400 \lambda-\lambda x y \\
\frac{\partial F}{\partial x} & \left.=120-\lambda y=0 \Rightarrow \lambda=\frac{120}{y}\right\} \frac{120}{y}=\frac{60}{x} \Rightarrow y=\frac{60}{x} \\
\frac{\partial F}{\partial y} & =60-\lambda x=0 \Rightarrow x \\
& \text { In constraint: }
\end{aligned}
$$

12 points 8. Suppose a monopolist produces and sells a certain product in two different countries.

Country	Number sold	Price
1	x	$90-\frac{x}{20}$
2	y	$100-\frac{y}{10}$

Then the total revenue is

$$
R(x, y)=x\left(90-\frac{x}{20}\right)+y\left(100-\frac{y}{10}\right) .
$$

If there is a fixed cost of $\$ 5000$ and a cost-per-item of $\$ 10$, then the total cost is

$$
C(x, y)=5000+10(x+y) .
$$

Then Profit $=$ Revenue - Cost:

$$
\begin{aligned}
P(x, y) & =x\left(90-\frac{x}{20}\right)+y\left(100-\frac{y}{10}\right)-[5000+10(x+y)] \\
& =-\frac{1}{20} x^{2}+80 x-\frac{1}{10} y^{2}+90 y-5000
\end{aligned}
$$

So here is the problem: find the values of x and y which maximize profit

$$
P(x, y)=-\frac{1}{20} x^{2}+80 x-\frac{1}{10} y^{2}+90 y-5000
$$

Use first derivatives to find the values of x and y, and use second derivatives to make sure that you have found where $P(x, y)$ is maximized (rather than minimized).

$$
\begin{aligned}
& \frac{\partial P}{\partial x}=-\frac{x}{10}+80=0 \Rightarrow x=800 \\
& \frac{\partial P}{2}=-y+90=0 \Rightarrow y=450
\end{aligned}
$$

$$
\frac{\overline{\partial y}}{\partial y}=\frac{5}{5}
$$

$$
D(x, y)=\left(-\frac{1}{10}\right)\left(-\frac{1}{5}\right)-0^{2}=\frac{1}{50}
$$

$$
D(800,450)=\frac{1}{50}>0 \text {, so min or max. }
$$

$$
\frac{\partial^{2} f}{\partial x^{2}}(800,450)=-\frac{1}{10}<0 \text {, so max. }
$$

Notice prices are:

$$
90-\frac{800}{20}=50,
$$

$$
100-\frac{450}{5}=55
$$

16 points 9. Suppose now that the monopolist in Problem 8 must charge the same price in both countries. That is, it must be that $90-\frac{x}{20}=100-\frac{y}{10}$.
Find the values of x and y which maximize profit

$$
P(x, y)=-\frac{1}{20} x^{2}+80 x-\frac{1}{10} y^{2}+90 y-5000 .
$$

subject to the equal price constraint that $90-\frac{x}{20}=100-\frac{y}{10}$ i.e. $0=10+\frac{x}{20}-\frac{y}{10}$

$$
\begin{aligned}
& F(x, y)=-\frac{1}{20} x^{2}+80 x-\frac{1}{10} y^{2}+90 y-5000+\lambda\left(10+\frac{x}{20}-\frac{y}{10}\right) \\
&=-\frac{1}{20} x^{2}+80 x-\frac{1}{10} y^{2}+90 y-5000+10 \lambda+\frac{\lambda}{20} x-\frac{\lambda}{10} y \\
& \begin{aligned}
& \frac{\partial F}{\partial x}= \\
& \hline
\end{aligned} \frac{x}{10}+80+\frac{\lambda}{20}=0 \Rightarrow \lambda=20\left(\frac{x}{10}-80\right)=2 x-1600 \\
& \frac{\partial F}{\partial y}= \frac{-y}{5}+90-\frac{\lambda}{10}=0 \Rightarrow \lambda=10\left(\frac{-y}{5}+90\right)=-2 y+900 \\
& \text { So } 2 x-1600=-2 y+900 \Rightarrow x=1250-y
\end{aligned}
$$

In constraint:

$$
\begin{aligned}
& \left(0=10+\frac{1250-y}{20}-\frac{y}{10}\right) \cdot 20 \\
\Rightarrow & 0=200+1250-y-2 y \\
\Rightarrow & y=\frac{1450}{3}=483 \frac{1}{3} \\
& x=1250-6=766 \frac{2}{3}
\end{aligned}
$$

Notice prices:

$$
\left.\begin{array}{l}
90-\frac{766 \frac{2}{3}}{20}=51 \frac{2}{3} \\
100-\frac{483 \frac{1}{3}}{10}=51 \frac{2}{3}
\end{array}\right\}
$$

Same, and between original prices of 50 and 55.

