Review for Exam 3

- Chapter 7 Unpaired continuous data
- Chapter 8 Paired continuous data
- Chapter 9 Categorical data: proportions confidence intervals
- Chapter 10 Categorical data: test statistic and P-value

Tables 6 - 8: Discrete (e.g. a whole number) test statistics

Tables 4, 9: Continuous-valued (e.g. can be any value) test statistics

P-values in every table: If H_0 were true, then *P* is the likelihood of getting samples *this different* from what was expected/predicted, as described in H_0 , *or even more different*.

For Tables 6 - 9, the *P*-values given are for the non-directional case. For the directional case, divide the given *P*-value by 2 to get the directional *P*-value.

Test Table	Change in test statistic	Example	
t _s	New $t_s = \sqrt{2}$ Old t_s	Example 7.2.2	
Table 4		Old $t_s = 2.34$, $df \approx 8 \Rightarrow .04 < P < .05$	
		New $t_s = \frac{(540.8 - 444.2) - 0}{\sqrt{\frac{66.1^2}{12} + \frac{69.6^2}{10}}} \approx 3.31, df \approx 19 \Rightarrow .001 < P < .01$	
WMW	New $U_s = 4$ Old U_s	Table 7.10.2	
Table 6		Old $n = 8, n' = 7, U_s = 49.5 \Rightarrow .010 < P < .021$	
		New $n = 16, n' = 14, U_s = 198 \Rightarrow P \ll .0045$	
Sign	New $B_s = 2$ Old B_s	Example 8.4.1	
Table 7		Old $n = 11, B_s = 9 \Rightarrow P = .065$	
		New $n = 22, B_s = 18 \Rightarrow P = .004$	
Signed	New $W_s \approx 4$ Old W_s	Example 8.5.1, Table 8.5.3	
Rank		Old $n = 9$ (note: $1 + 2 + 3 + \dots + 9 = \frac{9 \cdot 10}{2} = 45$)	
		$W_{-} = 1 + 2 + 3 = 6, W_{+} = 4 + \dots + 9 = 39,$ $W_{s} = 39 \Rightarrow .0390 < P < .0980$	
		New $n = 18 \left(1 + 2 + 3 + \dots + 18 = \frac{18 \cdot 19}{2} = 171 \right)$	
		$W_{-} = 1 + \dots + 6 = 21, W_{+} = 7 + \dots + 18 = 150,$ $W_{s} = 150 \Rightarrow .0100 < P < .0019$	
Chi-	New $\chi_s^2 = 2$ Old χ_s^2	Table 10.5.3	
square		Old $\chi_s^2 = 14.09, df = 4 \Rightarrow .001 < P < .01$	
		New $\chi_s^2 = 28.18, df = 4 \Rightarrow P < .0001$	

The effects of doubling sample size on test statistics, and the resulting *P*-values.

Confidence intervals shrink/decrease in width as sample size increases.

Example 7.2.2 (from previous page):

Suppose $\alpha = .01$ (so 99% confidence). From previous page:

Original			
t_s	Р		
2.34	.04 < P < .05		
Don't reject H_0			

New (with doubled n)				
t_s	Р			
3.31	.001 < P < .01			
Reject H ₀				

Confidence intervals:

Original: $df \approx 8$, so t = 3.355, so

$$\mu_1 - \mu_2 = 540.8 - 444.2 \pm 3.555 \sqrt{\frac{66.1^2}{6} + \frac{69.6^2}{5}}$$
$$= 96.6 \pm 3.355(41.195) = 96.6 \pm 138.21$$

i.e.

$$-41.61 < \mu_1 - \mu_2 < 234.81$$

which includes 0, so we do not conclude that $\mu_1 - \mu_2 \neq 0$.

New (with doubled *n*): $df \approx 16$, so t = 2.921, so $\mu_1 - \mu_2 = 540.8 - 444.2 \pm 2.921 \sqrt{\frac{66.1^2}{12} + \frac{69.6^2}{10}}$ $= 96.6 \pm 2.921(29.129) = 96.6 \pm 85.06$ $\uparrow \approx 41.195/\sqrt{2}$ $\uparrow \approx 138.21/\sqrt{2}$

i.e.

$$11.54 < \mu_1 - \mu_2 < 181.66$$

which does not include 0, so we do conclude that $\mu_1 - \mu_2 \neq 0$.