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Section 7.6  More on Interpretation of Statistical Significance 
 

Significant:  The difference between the samples is large enough for us to conclude their 
respective populations are different.  Important:  So we’ve shown that there really is a 
difference in population means, but is this difference big enough to really matter?                       
In Class Example 1, we compare male and female GPAs for college students nationwide 
(with made up numbers).  Let’s use  𝛼𝛼 = 0.05. 
 

 Sample 1 2 1 2 1 2 
 𝑛𝑛 100 90 1000 900 10000 9000 
 𝑦𝑦� 2.71 2.73 2.71 2.73 2.71 2.73 
 𝑠𝑠 . 41 . 45 . 41 . 45 . 41 . 45 
 𝑡𝑡𝑠𝑠 −.319 −1.009 −3.19 

𝑃𝑃  Table 4 𝑃𝑃 > .40 . 20 < 𝑃𝑃 < .40 . 001 < 𝑃𝑃 < .010 
Exact . 750 . 313 . 0014 

 Reject 𝐻𝐻0? No No Yes 
 

In all three cases the sample statistics (mean, standard deviation) are the same.  But larger 
samples result in a larger test static and a smaller 𝑃𝑃 value.  In the first two cases, the 
difference between the two samples is not statistically significant (using 𝛼𝛼 = 0.05).  That 
is, the samples are not different enough for us to conclude that there really is a difference 
nationwide in male and female GPAs.  In the third case, the difference is statistically 
significant, in which case we would conclude that the two populations (male and female) 
really are different in average GPA.  And so what?  Is it important?  Not necessarily.  
(Probably grad schools and employers wouldn’t care about a 0.02 difference in GPA.)  
Let’s look at Example 7.6.7 with Table 7.6.3.  
 
Just like being significant is somewhat subjective (for example, do we want to be 80% 
confident or 90% or 95%?), being important is also subjective.  Like significance, to me it’s 
not like the difference between two means is either important or not.  It’s to what degree 
it is important.  You might measure this by relative difference: 

|𝜇𝜇1 − 𝜇𝜇2|
𝜇𝜇1

   or   
|𝜇𝜇1 − 𝜇𝜇2|

𝜇𝜇2
   or   

|𝑦𝑦�1 − 𝑦𝑦�2|
𝑦𝑦�1

   or   
|𝑦𝑦�1 − 𝑦𝑦�2|

𝑦𝑦�2
 

Let’s work Class Example 2. 
 
We can also look at effect size, where  𝜎𝜎  is the larger population standard deviation,  

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 =
|𝜇𝜇1 − 𝜇𝜇2|

𝜎𝜎
   or (more commonly)   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 =

|𝑦𝑦�1 − 𝑦𝑦�2|
𝑠𝑠

  

where  𝑠𝑠  the larger sample standard deviation.  Often both populations, thus the samples, 
have similar standard deviations.  BTW, this feels similar to a  𝑠𝑠-value:  difference relative 
to (i.e. divided by) standard deviation. 



With effect size, we are computing how different the one sample mean is from the other, 
relative to how spread out the data is.  Larger effect ⇔ the samples are more different.  
Effect size is basically the opposite of the amount of overlap between the two samples: 

Samples are not too different  ⇔  Smaller effect size (more overlap) 
 Samples are more different  ⇔  Larger effect size (less overlap). 

Let’s discuss the Example below.  𝐻𝐻0:𝜇𝜇1 = 𝜇𝜇2 ,  𝐻𝐻𝐴𝐴:𝜇𝜇1 ≠ 𝜇𝜇2.  We’ll use  𝛼𝛼 = 0.10.   

Case Original Larger   
𝑦𝑦�1 − 𝑦𝑦�2 

Smaller  
 𝑠𝑠1 and/or 𝑠𝑠2 

Larger  
samples 

Sample 1 2 1 2 1 2 1 2 
𝑛𝑛 16 25 16 25 16 25 110 100 
𝑦𝑦� 20 18 23 18 20 18 20 18 
𝑠𝑠 8 7 8 7 4 2 8 7 

Effect size 2/8 = .250 5/8 = .625 2/4 = .500 2/8 = .250 
𝑡𝑡𝑠𝑠 0.819 2.048 1.857 1.932 
𝑃𝑃 0.420 0.050 0.079 0.055 

Conf. int. for  𝜇𝜇1 − 𝜇𝜇2 (-2.153, 6.153) (0.847, 9.153) (0.138, 3.862) (0.289, 3.711) 
𝜇𝜇1 ≠ 𝜇𝜇2,  

𝑠𝑠. 𝑒𝑒.  𝜇𝜇1 − 𝜇𝜇2 ≠ 0? Not sure Yes Yes Yes 

Reject 𝐻𝐻0, accept  𝐻𝐻𝐴𝐴? No Yes Yes Yes 

 

 

           
 

  



Observations (all of which we’ve seen before, but now described along with effect size): 
• Two things that will result in a narrower confidence interval:  smaller standard 

deviations in the samples and/or larger sample sizes.  Both of these make us happy. 
• Larger effect size occurs when  𝑡𝑡𝑠𝑠  is larger, so larger effect size means we’re more 

likely to end up concluding that the populations (from which the samples come) 
have different means. 

• Even with the same effect size, if the samples are large enough, we can still detect 
(determine, decide) that the population means really are different.  It’s like our 
test is more sensitive to (and trusts more) even small difference in samples. 

See Examples 7.6.5 – 7.6.7 for examples of what difference is and is not important. 
 
So why the term “effect”?  We’re often interested in the effect of something on some 
group of things, e.g. the effect of a drug on treating an illness or the effect of a certain 
diet on losing weight.  If there is more effect, the two samples (one control, one being 
treated) will be more different, and there will be less overlap between the samples: 

Samples are more different  ⇔ Larger effect size (less overlap of samples). 
 

Section 7.7  Planning for Adequate Power 
 

Situation What we should do What we actually do Did we err? 
Population means 
are approximately 

the same 
Don’t reject 𝐻𝐻0 

Don’t reject 𝐻𝐻0   Nope 

Reject 𝐻𝐻0, accept 𝐻𝐻𝐴𝐴 Type I error 

Population means 
are different 

Reject 𝐻𝐻0,         
accept  𝐻𝐻𝐴𝐴 

Don’t reject 𝐻𝐻0 Type II error 

Reject 𝐻𝐻0, accept  𝐻𝐻𝐴𝐴 Nope 
 
                 Confidence is 1 − 𝛼𝛼,  where  𝛼𝛼  is the max chance of making a Type I error. 
                          Power is 1 − 𝛽𝛽,  where  𝛽𝛽  is the max chance of making a Type II error. 

Then confidence level is the likelihood that we will: 
• Not make a Type I error.   
• Not reject  𝐻𝐻0  when we should not. 
• Not decide the populations are different if in fact they are not different. 

 
Then power is the likelihood that we will 

• Not make a Type II error.   
• Reject  𝐻𝐻0  when we should. 
• Decide the populations are different if in fact they are different. 
• For example, if 𝛽𝛽 = .10, then there is (at most) at 10% chance we might make a 

Type II error, and (at least) a 90% chance that we will not.  More formally,  Power  
=  Pr{significant evidence for  𝐻𝐻𝐴𝐴}  if  𝐻𝐻𝐴𝐴  is true. 

The trade-off between confidence and power:  if  𝛼𝛼  is smaller, we are less likely to make 
a Type I error, since we will be less likely to reject 𝐻𝐻0 and accept  𝐻𝐻𝐴𝐴 (including in the case 



that we should reject 𝐻𝐻0), but we are more likely to make a Type II error.  Conversely, 
decreasing the likelihood of a Type II error increases the likelihood of a Type I error. 
 
There are certain things we can control and others we cannot control regarding power.  
Things that will increase power:  

• Larger difference between sample means, i.e. larger  𝑦𝑦�1 − 𝑦𝑦�2.  The more different 
the samples are, the more likely it is we’ll conclude the populations are different, 
if that is actually the case.   

• Smaller sample standard deviations  𝑠𝑠1  and/or  𝑠𝑠2  (since more variation in the 
sample makes us trust the sample mean less, which makes us less certain about 
deciding that the two population means really are different just because the 
sample means are). 

• Larger sample sizes:  in general, whatever we are deciding or concluding about the 
populations based on the samples, we will believe it even more if we have more 
data (in this case, larger samples) to support that claim—it’s a trade-off:  we will 
spend more time and money for larger samples, but we’ll get more reliable results. 

• Larger 𝛼𝛼, that is, greater tolerance for Type I errors (since the less tolerance we 
have for Type I errors, the more likely it is that we will make Type II errors)—it’s a 
trade-off, as mentioned above. 

 
Given a particular Type I error tolerance (such as  𝛼𝛼 = .05), the one thing we can control 
is sample size.  Table 5 helps us know the necessary minimum sample size to attain a 
certain power level given a certain effect size  |𝜇𝜇1−𝜇𝜇2|

𝜎𝜎
  which we approximate with  |𝑦𝑦�1−𝑦𝑦�2|

𝑠𝑠
.   

 
Even though Table 5 is a little strange at first and you will likely wonder where they came 
up with all of these sample size values (you can see Appendix 7.1 on page 614 for all of 
the beautiful details), it is basically telling us that larger sample sizes result in: 

• Higher confidence: larger 1 − 𝛼𝛼 (smaller 𝛼𝛼), less chance of making a Type I error. 
• More power:  larger 1 − 𝛽𝛽 (smaller 𝛽𝛽),  less chance of making a Type II error, 
• Hypothesis testing that is more sensitive to differences in the samples, that is, 

effect size. 
 
As with Tables 3 and 4, we could use technology for a more complete set of values for  𝛼𝛼  
and power and effect size  |𝜇𝜇1−𝜇𝜇2|

𝜎𝜎
,  rather than just those in Table 5.  Also, in general, it 

turns out that the power will be maximized if the sample sizes are the same, so that is 
usually what we (approximately) try to do.   
 
If time, let’s work HW 7.7.3.  Also see Example 7.7.3 and the thoughts at the end of that 
example. 


