
Math 316 
 

Section 7.3  Further Discussion of the  𝑡𝑡  Test 
 
Recall how we found a confidence interval for  𝜇𝜇  using the sample mean, etc.: 

𝜇𝜇 = 𝑦𝑦� ± 𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝐸𝐸𝑌𝑌�  
where 

𝑆𝑆𝐸𝐸𝑌𝑌� =
𝑠𝑠
√𝑛𝑛

 . 

We can find a confidence interval for the difference of two populations means  𝜇𝜇1 − 𝜇𝜇2: 

𝜇𝜇1 − 𝜇𝜇2 = (𝑦𝑦�1 − 𝑦𝑦�2) ± 𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 
where   

𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 = �𝑆𝑆𝐸𝐸12 + 𝑆𝑆𝐸𝐸22 = �𝑠𝑠12

𝑛𝑛1
+ 𝑠𝑠22

𝑛𝑛2
 .  

In particular, we’re interested in whether or not the confidence interval  

(𝑦𝑦�1 − 𝑦𝑦�2) − 𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 < 𝜇𝜇1 − 𝜇𝜇2 < (𝑦𝑦�1 − 𝑦𝑦�2) + 𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 

includes the value of 0.  If it does, then it is possible that  𝜇𝜇1 − 𝜇𝜇2 = 0, i.e. 𝜇𝜇1 = 𝜇𝜇2.   
If 0 is not in the interval, then we conclude that  𝜇𝜇1 − 𝜇𝜇2 ≠ 0, i.e. 𝜇𝜇1 ≠ 𝜇𝜇2.   
  
Let’s look at HW 7.2.7 and its three variations from our previous class handout, but let’s 
find the confidence intervals now.  For the original version of the HW 7.2.7: 

𝑡𝑡𝛼𝛼/2 ⋅ 𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 = 𝑡𝑡𝛼𝛼 2⁄ ⋅ �𝑠𝑠12

𝑛𝑛1
+ 𝑠𝑠22

𝑛𝑛2
= 2.145�24042

8
+ 22172

12
≈ 2282. 

Case Change Confidence interval Confidence interval Reject 𝐻𝐻0? 
1 Original case −1470 ± 2282 ( −3752 , 812 ) No 
2 Larger difference 𝑦𝑦1 − 𝑦𝑦2 −𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 ±  2282 (−𝟓𝟓𝟐𝟐𝟓𝟓𝟐𝟐 ,−𝟓𝟓𝟐𝟐𝟐𝟐) Yes 
3 Smaller 𝑠𝑠1 and/or 𝑠𝑠2 −1470 ± 𝟐𝟐𝟐𝟐𝟏𝟏𝟓𝟓 (−𝟐𝟐𝟏𝟏𝟐𝟐𝟓𝟓 ,−𝟐𝟐𝟓𝟓𝟐𝟐) Yes 
4 Larger 𝑛𝑛1 and/or 𝑛𝑛2 −1470 ± 𝟐𝟐𝟏𝟏𝟏𝟏𝟐𝟐 (−𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐 ,−𝟐𝟐𝟐𝟐𝟐𝟐) Yes 

  
Confidence level affects the interval width.  We’ll again revisit HW 7.2.7 with different 
levels of confidence.  In that problem we had 𝑑𝑑𝑑𝑑 ≈ 14 and 𝑆𝑆𝐸𝐸𝑌𝑌�1−𝑌𝑌�2 = 1040. 

Conf.  𝛼𝛼           𝑡𝑡𝛼𝛼/2 ⋅    𝑆𝑆𝐸𝐸 = Confidence interval Confidence interval Reject 𝐻𝐻0? 

80% . 20  𝟐𝟐.𝟏𝟏𝟐𝟐𝟓𝟓 ⋅ 1064 = 𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐 −1470 ±  𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐 (−2901 ,−39) Yes 
95% . 05 2.145 ⋅ 1064 = 2282 −1470 ± 2282 ( −3752 , 812 ) No 
99% . 01 𝟐𝟐.𝟓𝟓𝟏𝟏𝟏𝟏 ⋅ 1064 = 𝟏𝟏𝟐𝟐𝟑𝟑𝟏𝟏 −1470 ± 𝟏𝟏𝟐𝟐𝟑𝟑𝟏𝟏 (−4637 , 1697) No 

So higher confidence (good) means larger 𝑡𝑡𝛼𝛼 2⁄ , which means a wider interval (bad)—it’s 
a trade-off—which means we are less likely to conclude that 𝜇𝜇1 − 𝜇𝜇2 ≠ 0 (i.e. 𝜇𝜇1 ≠ 𝜇𝜇2), 
since a wider confidence interval is more likely to include 0. 



 

When rejecting the null hypothesis and accepting the alternative hypothesis—or not—
there are four possible situations and outcomes (this is Table 7.3.2). 

Situation What we should do What we actually do Did we err? 
Population means 
are approximately 

the same 
Don’t reject 𝐻𝐻0 

Don’t reject 𝐻𝐻0   Nope 

Reject 𝐻𝐻0, accept 𝐻𝐻𝐴𝐴 Type I error 

Population means 
are different 

Reject 𝐻𝐻0,                   
accept  𝐻𝐻𝐴𝐴 

Don’t reject 𝐻𝐻0 Type II error 

Reject 𝐻𝐻0, accept  𝐻𝐻𝐴𝐴 Nope 
 
A Type I error can occur if the two population means are approximately the same, but 
due to the fact that we can get different samples from (or similar) populations with the 
same mean, we ended up with samples that seem to be from different populations.  (Their 
test statistic 𝑡𝑡𝑠𝑠 is large.)  For example, if we had two populations with the same mean and 
standard deviation as given for Example 5.2.5, we might still end up with the samples in 
(b) and (c).  These two samples, although from populations that have the same mean, 
appear to be from populations that have different means.  For those two samples we find  

𝑡𝑡𝑠𝑠 =
538 − 445

�1192
25 + 1132

25

= 2.83 

 

(which, with 𝑑𝑑𝑑𝑑 ≈ 48, gives a P value of .007—that is, there is a 0.7% likelihood of two 
samples being this different if the populations from which they come have the same 
mean).  A Type 2 error can occur if the populations’ means really are different, but due to 
chance the samples appear to be approximately the same.  For example, suppose that for 
two populations   

𝜇𝜇1 = 525  and  𝜎𝜎1 = 15       𝜇𝜇2 = 475  and  𝜎𝜎2 = 20, 

but that in their respective samples we have   

𝑦𝑦�1 = 505  and  𝑠𝑠1 = 17       𝑦𝑦�2 = 495  and  𝑠𝑠2 = 19. 

These samples appear to come from populations that are quite similar, similar enough 
that we would not conclude that they are different.  For example, if both samples had 
sample sizes 𝑛𝑛1 = 𝑛𝑛2 = 10, we would have the (not very large) value of 
 

𝑡𝑡𝑠𝑠 =
495 − 505

�172
25 + 182

25

= 1.24. 

 
We would end up not concluding that 𝜇𝜇1 ≠ 𝜇𝜇2.  Remember that not concluding that          
𝜇𝜇1 ≠ 𝜇𝜇2  does not mean that we are concluding that  𝜇𝜇1 = 𝜇𝜇2.   

 
 



 
See the paragraph after Example 7.3.4 for a brief discussion of what Type I and Type II 
errors might mean in a real life situation.  HW 7.3.8 asks you to determine what each of 
these errors would mean in a different real life situation. 
 
When you read the Significance Level versus 𝑃𝑃-value paragraph on page 245, keep in mind 
that  𝛼𝛼  is how much uncertainty we can accept, and  𝑃𝑃  is (in a way) our level of certainty 
that  𝜇𝜇1 = 𝜇𝜇2.  Recall the more precise definition of  𝑃𝑃:   

𝑃𝑃  is the likelihood of getting two samples that are this different, or even 
more different (as measured by  𝑡𝑡𝑠𝑠), if it were actually true that 𝜇𝜇1 = 𝜇𝜇2.   

For example, if  𝛼𝛼 = 0.05, then we can accept a likelihood of up to 5% of making a Type I 
error.  If  𝑃𝑃 = 0.037 < 0.05  we would reject the null hypothesis.  𝑃𝑃 = 0.037  means we 
are only about 3.7% certain the two population means are the same, so in deciding that 
they are different (by rejecting the null hypothesis), there is a 𝑃𝑃 = .037  likelihood we are 
making a Type I error.  The power of a test is the likelihood of not making a Type II error.  
See the short discussion starting at the bottom of page 247.  We’ll further discuss power 
in Section 7.7. 

 
Section 7.4  Association and Causation 

 
A couple of words we’ll see later.  Their standard definitions: 

• Confound:  confuse, mix up. 
• Spurious:  fake, false, misleading, deceptive, not being what it purports to be. 

 
Two types of studies: 

• In an experiment, the researcher intervenes in or manipulates the experimental 
conditions. 

• In an observational study, the researcher merely observes an existing situation. 
 
One big question we often have to deal with is what actually causes the differences in 
whatever it is we are measuring.  In Example 7.4.3, they describe how low baby birth 
weights are associated with the smoking during pregnancy.  By now we understand that 
smoking is bad for you in every way (including during pregnancy), but years ago it was yet 
not clear that smoking harmed unborn babies.  Careful studies were needed to show that. 
 
Association is not causation.  In Example 7.4.5 they continue their discussion about how 
one variable (such as how much the woman drinks) might confound or confuse the effect 
of the other variable (such as how much the woman smokes). 
 
  



 
While our modern understanding of smoking by now makes that cause (smoking) and 
effect (lower birth weight) pretty obvious, it could also be that there is some other cause 
of the lower birth weights, such as poor diet, poor prenatal care, alcohol consumption, 
etc., all of which might be effects of simply being poor.  So perhaps women who smoke 
tend to be poorer, which results in poorer diet and prenatal care, and more drinking, 
which are the true causes of low birth weight.  What you would need is a study with two 
groups of women in which the average diet, prenatal care, and anything else that you 
might expect to affect birth weight are the same, but in which one group the women 
smoke and in the other group they don’t smoke.  See the top of page 254 for some 
discussion on this.  It’s tough to come up with exactly that situation.  As I’ve said before, 
the easier part of collecting and analyzing data is generally the analysis.  The harder part 
is creating a good study from which we get the data.   
 
Not only can the effect of one variable confound or confuse the effect the other, there 
may be a variable that seems to have an effect on something but in reality does not.  (This 
is a little different that the smoking and drinking which probably both have some negative 
effect on birth weight, it’s just that they are confounding variables because it is not clear 
how much it is the smoking and how much it is the drinking that results in lower birth 
weight.)  Example 7.4.7 describes how some once believed that ultrasounds might cause 
(rather than just giving us images of) birth defects in unborn children.  A possible current 
version of this issue is whether mammograms (in our attempt to detect breast cancer) 
are actually increasing the likelihood of breast cancer (which some people believe).     
 
See the book’s thoughts on experimental units.  Also, a randomization distribution is 
simply all of the possible samples we could have from a particular collection of data.  For 
example, if our population were the numbers 1, 2, 3 and 4, and we were taking samples 
of size 2, the randomization distribution would consist of the six samples  1 & 2, 1 & 3,       
1 & 4, 2 & 3, 2 & 4 and 3 & 4  (along with their respective means and standard deviations).  
Example 5.1.3 and Table 5.1.1 also give an example which gives all possible samples. 
  
If time, we’ll look at HW 7.4.2. 
 
Statistical ideas and method are very useful, but must be treated with caution, else the 
saying “there are lies, there are damn lies, and then there are statistics” will actually 
become reality.  I mention this in relation to causation and association. 
 
 


