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Reminder:  the distribution consists of the outcomes and their frequency or relative 
frequency or probability.  Figure 3.4.1. 
 

Section 5.1 Basic Ideas  
 

We typically take a sample and compute its mean and standard variation in order to learn 
about the population, but without having to get data from the entire population, which 
would usually be difficult or often impossible.   
 
Let’s consider an example we’ll see in Section 5.2.  Suppose that we want to know (1) the 
average weight of all Princess Bean seeds and (2) the variability (variance or standard 
deviation) of those weights.  We will use the sample mean  𝑦𝑦�  and standard deviation  𝑠𝑠 
as estimates for the population mean  𝜇𝜇  and standard deviation  𝜎𝜎.  (We’re usually more 
interested in the mean.)  Consider the sample shown in Figure 5.2.6b.  If this were the 
only information we had about the population (that is, if we didn’t actually know the 
population’s mean or standard deviation), then our best guess is that the population 
mean (the average weight of Princess Bean seeds) is  𝜇𝜇 = 𝑦𝑦� = 526.1.  Of course we 
wouldn’t necessarily expect that  𝜇𝜇 = 526.1  exactly, but we would expect that  𝜇𝜇  is close 
to that value.  Eventually, based on information from the sample, we will end up making 
a statement like “we are 95%  confident that  𝜇𝜇 = 526.1 ± 46.9.”  So where does this 
margin of error 46.9 come from?  (This 95% level of confidence is arbitrary, but pretty 
standard.)  The margin of error 46.9 depends on three things:  

1. How confident we want to be:  more confidence  ⇒  larger margin of error. 
2. How many seeds in our original sample:  larger sample  ⇒  smaller margin of error. 
3. How much variability was in the sample:  less variability (smaller standard 

deviation) within the sample  ⇒  smaller margin of error. 
 

Section 5.2  The Sample Mean 
 
Given a sample, we want to make an estimate about the population.**  To move toward 
that goal, for now we’ll do the opposite:  given a population (in particular, its mean and 
standard deviation), we will estimate what a sample from that population would look like.   

So what would a single sample look like?  Answer: like a miniature version of the 
population itself—more or less—since there is always some randomness in each sample.  
See the nine samples on pages 156 – 157.  Each has essentially the same distribution 
(shape) as the population with approximately the same mean and standard deviation as 
the population, but some samples are more different than the population than others.   

**This is a good time to remind you about the issue of “do I divide by  𝑛𝑛  or by  𝑛𝑛 − 1?”  when computing 
standard deviation.  If your data are from the entire population, then you divide by  𝑛𝑛, while if your data 
are from a sample which you are using to estimate the population parameters, then you divide by  𝑛𝑛 − 1.  
Since we are usually just working with samples (rather than the entire population), the only formula the 
book gives for standard deviation is the one dividing by  𝑛𝑛 − 1.  See the box on page 60, and the note 
about “Why  𝒏𝒏 − 𝟏𝟏” on page 62. 
 



Related to this is a second issue:  what would the sampling distribution be?  The sampling 
distribution is the distribution of the sample means.  That is:  we take a bunch of samples, 
we compute the mean of each sample, and these sample means are now our data.  See 
Figure 5.2.1.  Consider the nine samples on p. 156 - 157.  The nine sample means are  

526   481   538   445   502   461   488   518   514 

What would you guess the mean of the nine sample means is?  It is 497, which is pretty 
close to what you probably guessed: the population mean 500.  The standard deviation 
of these sample means is 41.  (In a minute, we’ll discover how this sample means standard 
deviation 𝜎𝜎𝑌𝑌� = 29 relates to the population standard deviation 𝜎𝜎 = 120.)  Some 
important intuition:   

  Larger samples ⇒  Each sample mean is closer to population mean  
           ⇒  Less variation in samples means 
    ⇒  That is, smaller 𝜎𝜎𝑌𝑌� . 

Suppose we could take more than just these nine samples, say hundreds or thousands of 
(or ideally all possible) samples from this population.  This is referred to as a meta 
study.**  See Figure 5.1.1.  As Figure 5.2.1 illustrates, we are interested in the means of 
these samples.  So we’re interested in the mean and the standard deviation of the 
sampling distribution (that is, the mean and standard deviation of all of these sample 
means).  Let’s experiment a bit with the Central Limit Theorem simulator online (via the 
class homepage) a bit to help us answer these two questions. 
 
We are seeing (and it can be proven) that where  𝜇𝜇  and  𝜎𝜎  are the mean and standard 
deviation of the population (the original collection of data), then the mean  𝜇𝜇𝑌𝑌�   and 
standard deviation  𝜎𝜎𝑌𝑌�   of the sampling distribution (the  𝑌𝑌�  denotes sample mean) are 

𝜇𝜇𝑌𝑌� = 𝜇𝜇   and   𝜎𝜎𝑌𝑌� =
𝜎𝜎
√𝑛𝑛

 . 

See Theorem 5.2.1 and Table 5.2.2.  (Why were the mean and standard deviation of each 
of the nine sample means not exactly 𝜇𝜇𝑌𝑌� = 500  and  𝜎𝜎𝑌𝑌� = 120 √25⁄ = 24?)   
 
Finally, and very importantly, regardless of the original distribution, the sampling 
distribution will be approximately normal.  This is really significant, and the main reason 
we care about the normal distribution so much (it’s not because most real life data are 
normally distributed—most data are not): the larger the sample size  𝑛𝑛  is, the more 
normally distributed the sample means will be.  See Examples 5.3.1 and 5.3.2.  Let’s 
experiment more with the Central Limit Theorem simulator with data that is not normally 
distributed.  Let’s work some class examples based on Example 5.2.2/3. 
 
**For most populations we cannot actually take every possible sample, since there are simply too many, 
essentially infinitely many.  Book Example 5.1.3 gives an example in which every possible sample is actually 
listed, thus it is possible to find the complete sampling distribution, which is given in Table 5.1.2 and Figure 
5.1.2.  In that example, there are 3 possibilities for each woman, so for three women there are  33 = 27 
possible outcomes, which are listed in Tables 5.1.1 and 5.1.2 and Figure 5.1.2.  Also note:  I’ve seen the 
word “meta” or phrase “meta study” refer to analyzing a bunch of different studies on the same thing. 
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Section 5.4  Normal Approximation to the Binomial Distribution 
 
It turns out that when  𝑛𝑛,  the number of binomial trials (for example, the number of free 
throws being shot) is large, the binomial distribution is nicely approximated by the normal 
distribution. See Online Probability distribution of coin flips (Sections 3.4 – 3.5).  Recall 
that a normal distribution is characterized by its mean  𝜇𝜇  and its standard deviation  𝜎𝜎.  
Also recall the formulae for those given in Section 3.6:   

𝜇𝜇 = 𝑛𝑛𝑛𝑛                     𝜎𝜎 = �𝑛𝑛𝑛𝑛(1 − 𝑛𝑛) 

So let’s work Class Example 1 using the normal distribution approximation.  Notice the 
other way of thinking of the problem:  with proportions rather than amounts.  This way 
of thinking is what they are talking about in (b) in the box on page 163.  Remark 2 on 
page 164 is a little confusing.  Another way to see things is to simply divide both by the 
sample size 𝑛𝑛, as I just did in working Example 1 in class.  See Figure 5.4.1a,b. 

 
Finally, what about the beginning point of 60 shots and the end point of 80 shots?  We 
should have done what is called a continuity correction.  One last look at Class Example 1 
with that in mind.   
 
Note that the larger  𝑛𝑛  is (that is, the more binomial trials), the better the normal 
distribution approximates the binomial distribution.  See How Large Must 𝒏𝒏 be? at end 
of Section 5.4 on page 167. 
  

 


