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Section 12.3  The Fitted Regression Line 
 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟
= 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑦𝑦

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑥𝑥
,  so 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑥𝑥.   

 
For perfectly linear data (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) where  𝑦𝑦𝑖𝑖 = 𝑚𝑚𝑥𝑥𝑖𝑖 + 𝑏𝑏, it turns out that the 
slope is  𝑚𝑚 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟
= 𝑠𝑠𝑦𝑦

𝑠𝑠𝑥𝑥
  where  𝑠𝑠𝑥𝑥  and  𝑠𝑠𝑦𝑦  are the standard deviations of the  𝑥𝑥  and  𝑦𝑦  

values in the sample data.  If the data are not perfectly linear (which is normally the case), 
then the least squares (a.k.a. linear regression) line that best fits the sample data is 

𝑌𝑌 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 
where slope   

𝑏𝑏1 = 𝑟𝑟
𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

 

and 
𝑏𝑏0 = 𝑦𝑦� − 𝑏𝑏1𝑥̅𝑥   (from  𝑏𝑏0 = 𝑌𝑌 − 𝑏𝑏1𝑋𝑋). 

 
The SD line (in general, not very useful) has slope  

𝑠𝑠𝑦𝑦
𝑠𝑠𝑥𝑥

 .  See Figures 12.3.2 and 12.3.3 on 

page 526.  Don’t stress a lot if the book’s discussion about the SD vs. linear regression line 
isn’t completely clear.  It’s most important to understand what we’re actually going to be 
using (the linear regression line) rather than what we are not (the SD line).  The solid line 
(the linear regression line) in each figure better fits the data within each of the shaded 
regions for the  𝑋𝑋  value.  Each triangle shows the mean 𝑦𝑦-value in each region.     
 
Consider Example/Figure 12.3.5 on page 529.  Rather than predict a specific 𝑦𝑦-value for 
a given 𝑥𝑥-value, it is more appropriate to predict an average 𝑌𝑌-value for a given 𝑋𝑋-value: 

𝜇𝜇𝑌𝑌|𝑋𝑋 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋 

So in Example 12.3.6 on page 530 (Example 12.3.5 continued) with regression line (based 
on the sample)  𝑌𝑌 = 99.3 − 9.01𝑋𝑋, so at  𝑋𝑋 = 2.5  we have   

𝜇𝜇𝑌𝑌|𝑋𝑋=2.5 = 99.3 − 9.01(2.5) = 76.78 

So based on this sample, we estimate that the average amount of food consumption after 
an amphetamine dose of 2.5 mg/kg would be 76.78 mg/kg.  (Notice the units.) 
 
Speaking of units, what does the slope and its units mean?  Recall that  

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑥𝑥. 

For Example 12.3.5, notice the units in the slope 

−
9.01𝑔𝑔 𝑘𝑘𝑘𝑘⁄  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 𝑚𝑚𝑚𝑚 𝑘𝑘𝑘𝑘⁄ 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    
= −

9.01 𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    

 

Interpretation:  for each increase of 1 milligram of amphetamine administered to the rat, 
there is a decrease of 9.01 grams in food consumption. 
 
 



 
So we can find the least squares line that best fits the given sample data.  So where does 
the “least squares” name come from?  First, residual means “what is left over” or in this 
case “error.”  Given some data and the line that fits the data, for a given value of  𝑥𝑥,  the 
residual or error is the difference between  𝑦𝑦  (the actual value of the data for this  𝑥𝑥) and  
𝑦𝑦�  (the value that the line would predict for us).    

 
So at a particular  𝑥𝑥𝑖𝑖   the residual is  𝑒𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖, and the total error between the line 
and all of the data points is 

 
Don’t try to connect this to  𝑆𝑆𝑆𝑆  in ANOVA.  𝑆𝑆𝑆𝑆 simply means sum of squares. 

 
So the best fit line simply is the line which minimizes the sum of these errors, a pretty 
simple idea.  Next is the standard deviation of the residuals: 

 
This is quite similar to the formula for the standard deviation of sample values  𝑦𝑦1, … ,𝑦𝑦𝑛𝑛. 

 
 
  



 
Next, recall that for normally distributed data (as in Figure 4.3.5), approximately 

68% of data are within 1 SD of the mean 
95% of data are within 2 SD of the mean 
99.7% of data are within 3 SD of the mean 

 
Similarly, for least squares lines, approximately: 

68% of data are within 1 SD of the line 
95% of data are within 2 SD of the line 
99.7% of data are within 3 SD of the line 

 
See Figure 12.3.8 on page 533.   
 
Finally: 

 
This would be exact if in finding  𝑠𝑠𝑒𝑒   we divided by 𝑛𝑛 − 1 (as we do in finding 𝑠𝑠𝑦𝑦) rather 
than  𝑛𝑛 − 2.  There will always be variation in the  𝑌𝑌 values of the data since the  𝑌𝑌 values 
will change as the 𝑋𝑋 values change.  (Otherwise the data would be flat, which simply 
doesn’t happen.)  And then there will be some variation due to the line not perfectly 
fitting the data.  𝑠𝑠𝑌𝑌2  is the total amount of variation in the  𝑌𝑌  values in the data, and                
𝑠𝑠𝑒𝑒2  is how much variation there is due to the line and data not perfectly fitting each other.  
So  𝑠𝑠𝑌𝑌2 − 𝑠𝑠𝑒𝑒2  is the amount of 𝑠𝑠𝑌𝑌2  which is simply due to the linearly changing nature of the 

data.  So  𝑟𝑟2 ≈ 𝑠𝑠𝑌𝑌
2−𝑠𝑠𝑒𝑒2

𝑠𝑠𝑌𝑌
2   can be thoughts of as the fraction of the total variance  𝑠𝑠𝑌𝑌2  in the  𝑌𝑌  

values due to the linear nature of the data.  Two examples: 

Figure Page 𝑟𝑟 𝑟𝑟2 
% of variance in  𝑌𝑌  values 
due to linear relationship 

– –  1 1 100% 
12.3.7 533  0.94 0.88 88% 
12.3.8 533 −0.57   0.32 32% 

– –  0 0 0% 

And look at Figure 12.2.3 on page 516.  𝑟𝑟2 is the coefficient of determination.  Again, it 
tells us what proportion of the variance in the  𝑌𝑌  values is due to the (non-zero slope) 
linear relationship between  𝑋𝑋  and  𝑌𝑌. 
 
 


