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Before we get started, let’s note that often when the values of data are larger, the mean 
is of course larger, and the values are often more spread out (so higher standard 
deviation).  For example, the salaries of college students are usually lower and they are 
less spread out (less variability), while the salaries of adults further along in their careers 
are usually higher and more spread out (more variability).  Another way to describe that 
data is more spread out is that their differences from the sample mean are greater.  
Finally, recall that power is how likely we will determine two populations are different (by 
rejecting  𝐻0 and accepting 𝐻𝐴) if indeed they really are.   
 

Section 11.5  Applicability of Methods 
 
When is ANOVA appropriate?  See Standard Conditions at the beginning of Section 11.5.  

Then see Table 11.1.1.  Notice that  𝑠1 ≈ 𝑠2 ≈ ⋯ ≈ 𝑠5.  For normality, see Figure 11.5.4.  

Next, let’s look at Figure 11.5.2.  In (a) the twelve values in each group are displayed 
relative to their group’s mean.  In (b), the five samples are in a different order, based on 
their group’s sample mean (smallest to largest)—notice the symbol being used for each 
sample.  In (b) we see the plots in (a), but the values in each sample are displayed relative 
to their respective means.  The paragraph “While one could look…” describes why (b) 
might be more useful to us than (a) in visually determining how spread out each sample 
is, i.e. what the standard deviation is.  Also notice in (b) that the standard deviation does 
not seem to increase as the mean increases.  (As mentioned at the top of this handout, it 
is not uncommon for the standard deviation to increase as the sample mean increases.)  
An example of this is seen in Figure 11.5.3.  This would violate the “equal standard 
deviations” condition mentioned at the beginning of Section 11.5.   
 

Section 11.6  One-Way Randomized Blocks Design 
 

In Sections 11.2 and 11.4 we looked at how varying organic treatments of insects affects 

corn weight.  What if there is a second factor, such as how the five different types 

(treatments) of corn were located in the cornfield or in the lab?  Let’s discuss Class 

Observations 1 for three possible placements.  In the first two it might be easier to know 

how the placements would affect growth (e.g. as affected by sunlight), but the study is 

probably not very helpful if using these non-random placements.  On the other hand, the 

third placement is probably better, but it might be more difficult to understand how the 

placements might have affected the corn growth.  This section deals with how to account 

for and remove that second effect, in this case, the placement of the corn plants.  By the 

way, One-Way refers to having one thing (e.g. treatment) that affects what we are 

measuring (e.g. corn growth).  In Section 11.7 we will look at Two-Way ANOVA, in which 

we analyze how two different things (e.g. treatment, as well as types or amounts of 

fertilization) affect what we are measuring (e.g. corn growth). 



 

We’ll look at Book Example 11.6.7 and Table 11.6.3.  So we’re interested in how the rain 

type affects alfalfa growth.  However, a second factor—location of the plants (“Block”)—

might also be affecting the growth.  See Figure 11.6.1 for how the blocks were organized 

in this study.  We want to understand and remove the effect of that second factor, the 

blocking, so that the effect of the rain type is clearer.   

 

In Figure 11.6.3, you can see in the figure on the right that the blocks have a noticeable 

effect on the measurements (the five block means are different).  So how do we account 

for that effect? 

 

In Figure 11.6.4 we see the effects of blocking in more detail.  We see how the three 

values (from the three acidity levels) in the three blocks compare to the mean of their 

respective acidity level. For example, in Block 1 (using values from Table 11.6.3; 

Treatments are High acid, Low acid, and Control): 

 High Low Ctrl 

Block 1 1.30 1.78 2.67 

Treatment mean 0.91 1.13 1.77 

Difference 0.39 0.65 0.90 

So it appears that Block 1 resulted in greater growth than any of the other blocks.                      

Block 2 seems to cause the second most amount of growth.  And so on.  We also see this 

in the right part of Figure 11.6.3.  

 

The grand mean of these 15 observations is 1.27.  We see that Block 1 mean is  

1.92 –  1.27 =  0.65  larger than the grand mean, Block 2 mean is  1.55 − 1.27 = 0.28   

larger than the grand mean, and so on.  In Figure 11.6.5(a) is a plot of the original data, 

and in Figure 11.6.5 (b) are those data but with the effects of blocking removed:  we 

subtract from each value the effects of the block it came from, which is how much larger 

than the grand mean that block’s mean is.  For example, the High Acid value of 1.30 in 

Block 1 is modified to remove the effects of being in Block 1:  we subtract 0.65 from 1.30 

to get 0.65.   

 

Notice that the means in each treatment group are the same (so the variability between 

groups remains the same), but the variability within each group is smaller, so the test 

statistic will be larger.  



   

 

             

Figure 11.6.3 

Figure 11.6.5 Figure 11.6.4 

 High Low Ctrl Mean 
Mean minus 
grand mean 

Block 1 1.30 1.78 2.67 1.92  0.65 

Block 2 1.15 1.25 2.25 1.55  0.28 

Block 3 0.50 1.27 1.46 1.08 -0.19 

Block 4 0.30 .055 1.66 0.84 -0.43 

Block 5 1.30 0.80 0.80 0.97 -0.30 

Mean 0.91 1.13 1.77 1.27 0.00 

      

Block 1 0.65 1.13 2.02 1.27 Subtract 

Block 2 0.87 0.97 1.97 1.27 the effect 

Block 3 0.69 1.46 1.65 1.27 of blocking  

Block 4 0.73 0.98 2.09 1.27 from each 

Block 5 1.60 1.10 1.10 1.27 block 

Mean 0.91 1.13 1.77 1.27  

 



We’ve seen the effects of blocking.  But how do we find our test statistic  𝑭𝒔?  Basically 

the same as we’ve already learned, but there is one more source of variance we have to 

consider, variance due to blocking.  As before, 𝐹𝑠 =
𝑀𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛)

𝑀𝑆(𝑤𝑖𝑡ℎ𝑖𝑛)
.  We compute  

𝑀𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛)  as before, but we now find  𝑀𝑆(𝑤𝑖𝑡ℎ𝑖𝑛)  differently.  In One-way ANOVA, 

𝑆𝑆(𝑡𝑜𝑡𝑎𝑙) = 𝑆𝑆(𝑤𝑖𝑡ℎ𝑖𝑛) + 𝑆𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠) 

while in One-way ANOVA with blocking,  

𝑆𝑆(𝑡𝑜𝑡𝑎𝑙) = 𝑆𝑆(𝑤𝑖𝑡ℎ𝑖𝑛) + 𝑆𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠) + 𝑆𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑙𝑜𝑐𝑘𝑠). 

See page 473. 

 

The  𝑆𝑆(𝑤𝑖𝑡ℎ𝑖𝑛)  is now comprised of two parts:  the part due to the blocking (see Figure 

11.6.5(a) and (b)) and the part that is there due to the treatments.  So how do we find 

the part of  𝑀𝑆(𝑤𝑖𝑡ℎ𝑖𝑛)  that is not due to blocking?   

 

As we saw for One-way ANOVA, the  𝑆𝑆  and  𝑀𝑆  for  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑎𝑖𝑛 𝑡𝑦𝑝𝑒𝑠  is 

 

 
Similarly, the  𝑆𝑆  and  𝑀𝑆  for  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑙𝑜𝑐𝑘𝑠  is 

 

 
So we can find 

𝑆𝑆(𝑤𝑖𝑡ℎ𝑖𝑛) = 𝑆𝑆(𝑡𝑜𝑡𝑎𝑙) − 𝑆𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑎𝑖𝑛 𝑡𝑦𝑝𝑒𝑠) − 𝑆𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑏𝑙𝑜𝑐𝑘𝑠) 

where 

 



This is done in the book for the Rain and Alfalfa example, where  𝐹𝑠 =
1.986

2
1.452

8

=
0.993

0.182
≈ 5.47. 

 

 

Important: if we did not account for blocking, we would have  𝐹𝑠 =
1.986

2

   
2.441+1.452

12
   

≈ 3.06. 

Smaller  𝐹𝑠  ⇒  larger 𝑃  ⇒  less likely to reject  𝐻0 and accept  𝐻𝐴 (so a less powerful test). 
 
Experiment a bit:  Suppose we change the .80 in the Control to 1.80.  How will that change 

our results?  Look at Figure 11.6.5 to visualize this.  My guess, before doing any work:  

larger  𝑀𝑆(𝑏𝑒𝑡𝑤𝑒𝑒𝑛),  smaller  𝑀𝑆(𝑤𝑖𝑡ℎ𝑖𝑛), and larger  𝐹𝑠.  Let’s see: 

 

 
To reiterate:  removing blocking effects makes test more powerful:  we are more likely to 

detect a difference (via larger test statistic) in the groups/treatments if there really is one. 

𝟏. 𝟖𝟎                 𝟏. 𝟑𝟎𝟎 

𝟏. 𝟗𝟕 

𝟑. 𝟏𝟏𝟕     𝟏. 𝟓𝟓𝟖     𝟏𝟗. 𝟎𝟒 
𝟐. 𝟏𝟎𝟑     𝟎. 𝟓𝟐𝟔 
𝟎. 𝟔𝟓𝟓     𝟎. 𝟎𝟖𝟐 
 
 

Larger than before 

Smaller than before 


