Name: Solutions

Problem	T/F	1	2	3	4	Total
Possible	40	8	13	23	16	100
Received						

DO NOT OPEN YOUR EXAM UNTIL TOLD TO DO SO.

You may use a 3 x 5 card of handwritten notes, a calculator, and the provided Tables.

FOR FULL CREDIT, SHOW ALL WORK RELATED TO FINDING EACH SOLUTION.

If two samples are taken of sizes 20 and 30, then a test statistic of $t_s = 301$ would result in an extremely small *P*-value.

T

If two samples are taken of sizes 20 and 30, then a test statistic of $U_s = 301$ would result in an extremely small P-value. $U_s \le 600$ so P will be large. 20.30 = 600

F T

If comparing the means of two populations, if the samples are of sizes 20 and 30,

T

F

it would appropriate to use the t test. True for large samples. 20 is probably large enough, but T accepted for F. If comparing the means of two populations, if the samples are of sizes 20 and 30, it would be possible to use the Wilcoxon-Mann-Whitney Test, but the WMW Test might not be as powerful as the t test.

In the samples below, there is larger effect seen in the samples in (a) than the samples in (b).

- 8 points
- 1. The blood pressure of each of 38 persons was measured. The mean blood pressure of these 38 persons was 95. A histogram of the data is shown at right.

/6

Find (approximately, i.e. estimate) a 99% two-sided confidence interval for the mean diameter.

Hint: first estimate the standard deviation of the data, using

the histogram. $S \approx 10$, or too be a bit more liberal, 7.5 < s < 12.5. S = 5: definitely too small 37.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5. 17.5 < 5 < 12.5.

 $M = 95 \pm 2.750 \left(\frac{10}{\sqrt{38}}\right)$ i.e. $\left(90.54,99.46\right)$.

- 10 90 100 110 120 Blood pressure (mmHg)
- /2 If the 84% confidence interval for these 38 persons were $95 \pm a$ (where a is some number), if we instead had a sample of 152 (which is 4 times larger than 38) that had the same mean and standard deviation of the original 38 person sample, approximately what would be the 84% CI for this 152 person sample? (84% confidence is not a value given in Table 4. You do not need to know the t value to answer this question.)

If instead of 95° t $\frac{3}{100}$ we had 95° t $\frac{3}{400}$ then the interval of 95° a would now be $\frac{3}{200}$ $\frac{3}{200}$ i.e. approx. half the orig. width

13 points 2. We are interested in the diameter of the stem of a certain type of wheat plant. We take a sample of 8 plants, which have the following stem diameters, with mean 2.15 and standard deviation 0.51:

/5 Find a 90% two-sided confidence interval for the mean diameter.

$$df = 8 - 1 = 7 = t_{\alpha/2} = 1.895.$$

$$m = 2.15 \pm 1.895 \left(\frac{.51}{\sqrt{8}}\right)$$
i.e. $(1.81, 2.49)$

Find both 95% one-sided confidence intervals for the mean diameter.

1.81

From previous work:

1.81 < M

and M < 2.49

If we wanted to end up with a 90% two-sided confidence interval with total width of 0.02, how large would our sample need to be? (We would expect the standard deviation of this new larger sample to be approximately the same as for the 8 plant sample.)

n will need to be much larger, so need $t \approx 1.7$ (or maybe slightly $\frac{t \cdot s}{\sqrt{n}} \leq \frac{.02}{2} \Rightarrow n \geq \left(\frac{t \cdot s}{.01}\right)^2 = \left(\frac{(1.7)(.51)}{.01}\right)^2$ ≈ 7517

2.49

If the original data were changed so that the first and last values of 2.3 and 1.0 were now 2.4 and 0.9 (note the sample mean would still be 2.15), the new CI would be (circle one):

Wider The same width Narrower

Larger $S \Rightarrow larger \quad t \cdot S$

points 3.	We are comparing two populations from which we have the samples shown at right, each of size 4.		Sample 1	Sample 2
	For all of the following problems we will use $\alpha = 0.10$, i.e.		3.5	2
/=	confidence level of 90%, and $df = 4$.		3.5	3
/5	Find a two-sided confidence interval for $\mu_1 - \mu_2$. What is your conclusion regarding $H_0: \mu_1 = \mu_2$ with $H_A: \mu_1 \neq \mu_2$?		6.5	3
<u> </u>			6.5	4
36	$= \sqrt{\frac{1.73^2}{4} + \frac{82^2}{4}} \approx .957 \text{ Af} = 4 = 3 t = 2.132}$	Mean	5.00	3.00
		SD	1.73	0.82
м, -	$M_2 = 5 - 3 \pm 2.132(.957)$ $2 - 2.04$			
So /5	(04, 4.04), which includes O so $deNext, use the t-test for H_0: \mu_1 = \mu_2, H_A: \mu_1 \neq \mu_2. Show pertinent f$	→ → → → → → → → → → → → → → → → → → →	t reje u, = s, P, etc.).	ct M_2 .
	$t_s = \frac{5-3}{.957} = 2.09$ Table 4: .(05 <	one to	$\epsilon i / < .10$
	P f d, so (as above)			
	do not réject Ho.			
/2	What would your conclusion be if we instead had H_A : $\mu_1 < \mu_2$?			
	Wrong direction in sample: y, > So definitely do not reject H.	y 2.	acce	ept
/2	What would your conclusion be if we instead had $H_A: \mu_1 > \mu_2?$ One tailed test: .05 < $P < .10$ $P < \alpha$, so yes reject $H_A: \mu_1 > \mu_2?$			
/4	Suppose that all of the values in Sample 1 were 0.1 larger, so tho 3.6, 3.6, 6.6 and 6.6. How would the values of t_s and P change?		es were no	W
	t _s would be: Larger Same Smaller			
	P would be: Larger Same Smaller	3		
/5	What sample size would be needed (assuming both sample sizes in order to have a power level of 0.95, to go along with two-tailed company of the company of t			,
	` ` •	confiden		?

Table 5:

1.73 Rounddown to be conservative, i.e. larger n
5: n ≥ 19
Be wn
i.e.
Table 6: n 25

Be conservative, use largern,
so n 299. 16 points 4. Let's now use the Wilcoxon-Mann-Whitney Test, still with $\alpha = 0.10$.

/6 Test H_0 : $\mu_1 = \mu_2$ with H_A : $\mu_1 \neq \mu_2$. Show pertinent work.

U.	= 14	Table 1	le:
	•	10 < P <	. 20.
Usu	can t	ell P>	.10:
W	e red	(at least	+) Us 2 15
	to get	P < . 10	7 •

Sample 1	Sample 2
3.5	2
3.5	3
6.5	3
6.5	4

 $K_1 = 14 \quad K_2 = 2$ (Notice K, + K2 = 4.4)

What would your conclusion be if we instead had H_A : $\mu_1 < \mu_2$? /2

Wrong direction. Do not riject Hoor accept

/2 What would your conclusion be if we instead had $H_A: \mu_1 > \mu_2$?

One taited: .05 < P < . 10 P < x, so reject H, accept)

/4 Suppose that all of the values in Sample 1 were 0.1 larger, so those values were now 3.6, 3.6, 6.6 and 6.6. How would the values of U_s and P change? We see that the

 U_s would be:

P would be:

Larger

Larger

Same Same

Smaller

Smaller

WMW Test is not as sensitive to

Same K, K, K, Us, P.

changes in the data For the above data, which test is more appropriate, the t-test or the WMW Test? Why?

/2

WMW. Very small samples, and Sample 1 is not normal.